The angle with the largest measure is opposite the longest side. The longest side is 12. It is opposite angle B. The appropriate choice is ...
B. ∠B
So, we would need to remember, the one way that me personally would view square rooting would be by simplifying them, and that number would go into that number that many times. So, when doing this kind of problem, we are not truly going to do this, but we are just going to simplify it, and to see what other square "rooter" would go into that.
So, we would need to remember a (key) point, <em>we aren't just multiplying, for the most part, we're simplifying. </em>
Our result:
![\boxed{\boxed{\bf{2a^2b \sqrt[4]{24a^2b^3} }}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%5Cbf%7B2a%5E2b%20%5Csqrt%5B4%5D%7B24a%5E2b%5E3%7D%20%7D%7D%7D)
We didn't just multiplied it, we also simplified it also.
Number of toothpicks required per student = At least 9
Total number of students = 30
Number of toothpicks required for the entire class = At least 9 × 30 = At least 270
Number of toothpicks in the bag in the class storage room = 50
Additional number of toothpicks required to be bought to make sure there are enough toothpicks = 270 - 50 = 220
Hence, she needs to buy 220 toothpicks.
We have to find the" ratio of the area of sector ABC to the area of sector DBE".
Now,
the general formula for the area of sector is
Area of sector= 1/2 r²θ
where r is the radius and θ is the central angle in radian.
180°= π rad
1° = π/180 rad
For sector ABC, area= 1/2 (2r)²(β°)
= 1/2 *4r²*(π/180 β)
= 2r²(π/180 β)
For sector DBE, area= 1/2 (r)²(3β°)
= 1/2 *r²*3(π/180 β)
= 3/2 r²(π/180 β)
Now ratio,
Area of sector ABC/Area of sector DBE =
= 4/3