Answer:
Step-by-step explanation:
Hello!
X: number of absences per tutorial per student over the past 5 years(percentage)
X≈N(μ;σ²)
You have to construct a 90% to estimate the population mean of the percentage of absences per tutorial of the students over the past 5 years.
The formula for the CI is:
X[bar] ±
* 
⇒ The population standard deviation is unknown and since the distribution is approximate, I'll use the estimation of the standard deviation in place of the population parameter.
Number of Absences 13.9 16.4 12.3 13.2 8.4 4.4 10.3 8.8 4.8 10.9 15.9 9.7 4.5 11.5 5.7 10.8 9.7 8.2 10.3 12.2 10.6 16.2 15.2 1.7 11.7 11.9 10.0 12.4
X[bar]= 10.41
S= 3.71

[10.41±1.645*
]
[9.26; 11.56]
Using a confidence level of 90% you'd expect that the interval [9.26; 11.56]% contains the value of the population mean of the percentage of absences per tutorial of the students over the past 5 years.
I hope this helps!
The usual rules of addition and multiplication apply to complex numbers as well as to real numbers. The true statements are ...
- x + y = y + x . . . . . . . . . . . . . . . commutative property of addition
- (x × y) × z = x × (y × z) . . . . . . . . associative property of multiplication
- (x + y) + z = x + (y + z) . . . . . . . . associative property of addition
No, having the greater rate of change does not mean a function will necessarily reach an output with the smallest input. It also depends on the initial values of the functions. If Jeremy's aunt lives closer to school, Jeremy's rate of change is smaller, but he could still get to school before Amy.