I'm not sure what your book is saying about the matter but a cell phone is not usually an essential expense. If it is saying it is though, it would be an essential flexible expense.
Hundred thousand,ten thousand,hundred,ten,ones
The function given is a quadratic function, so the graph will be a parabola. It'll look similar to the photo attached. The minimum cost will be at the vertex of the parabola because that is its lowest point! To find the x-value of the vertex (which is what the question is looking for), use the vertex formula: x = -b/2a. The variable b is the coefficient of the x term in the function, and the variable a is the coefficient of the x² term. In this case, a = 0.125 and b = -5.
x = -(-5)/2(0.125)
x = 5/0.25
x = 20
So, 20 gas grills should be produced each day to maintain minimum costs. Hope that helps! :)
Answer:
Step-by-step explanation:
Hello!
The variable of interest is:
X: height of seaweed.
X~N(μ;σ²)
μ= 10 cm
σ= 2 cm
You have to find the value of the variable X that separates the bottom 0.30 of the distribution from the top 0.70
P(X≤x)= 0.30
P(X≥x)= 0.70
Using the standard normal distribution you have to find the value of Z that separates the bottom 0.30 from the top 0.70 and then using the formula Z= (X-μ)/σ translate the Z value to the corresponding X value.
P(Z≤z)= 0.30
In the body of the table look for the probability of 0.30 and reach the margins to form the Z value. The mean of the distribution is "0" so below 50% of the distribution you'll find negative values.
z= -0.52
Now you have to clear the value of X:
Z= (X-μ)/σ
Z*σ= X-μ
X= (Z*σ)+μ
X= (-0.52*2)+10= 8.96
The value of seaweed height that divides the bottom 30% from the top 70% is 8.96 cm
I hope this helps!
It is approximately 1.000