Answer:
a. P(X ≤ 5) = 0.999
b. P(X > λ+λ) = P(X > 2) = 0.080
Step-by-step explanation:
We model this randome variable with a Poisson distribution, with parameter λ=1.
We have to calculate, using this distribution, P(X ≤ 5).
The probability of k pipeline failures can be calculated with the following equation:

Then, we can calculate P(X ≤ 5) as:

The standard deviation of the Poisson deistribution is equal to its parameter λ=1, so the probability that X exceeds its mean value by more than one standard deviation (X>1+1=2) can be calculated as:

X - 9 + 2wx = y Add 9 to both sides
x + 2wx = y + 9 Factor out the x
x (1 + 2w) = y + 9 Divide both sides by (1 + 2w)
x = (y + 9) / (1 + 2w)
Answer:
100
Step-by-step explanation:
because 5+5=10
the 10^2=10*10=100
The margin of error of a given statistic is an amount that is allowed for in case of miscalculation or change of circumstances.
It is usually the radius or half of the width of the confidence interval of that statistic.
Given that a<span>
survey of the students in Lance’s school found that 58% of the
respondents want the school year lengthened, while 42% think it should
remain the same. The margin of error of the survey is ±10%.
This means that 58% </span><span>± 10% of the </span>respondents want the school year lengthened, while 42% <span><span>± 10% think it should
remain the same.</span>
Thus, from 48% to 68% </span><span><span>of the respondents want the school year lengthened, while from 32% to 52% <span>think it should
remain the same.</span> </span>
Therefore, according to
the survey data, at least 32% of students want the duration of the school
year to remain unchanged, and at least 48% want the school year to be
lengthened.</span>