Answer:
mass of U-235 = 15.9 g (3 sig. figures)
Explanation:
1 atom can produce -------------------------> 3.20 x 10^-11 J energy
x atoms can produce ----------------------> 1.30 x 10^12 J energy
x = 1.30 x 10^12 / 3.20 x 10^-11
x = 4.06 x 10^22 atoms
1 mol ----------------------> 6.023 x 10^23 atoms
y mol ----------------------> 4.06 x 10^22 atoms
y = 0.0675 moles
mass of U-235 = 0.0675 x 235 = 15.8625
mass of U-235 = 15.9 g (3 sig. figures)
Answer:
0.047 %
Explanation:
Step 1: Given data
- Partial pressure of ozone (pO₃): 0.33 torr
- Total pressure of air (P): 695 torr
Step 2: Calculate the %v/v of ozone in the air
Air is a mixture of gases. We can find the %v/v of ozone (a component) in the air (mixture) using the following expression.
<em>%v/v = pO₃/P × 100%</em>
%v/v = 0.33 torr/695 torr × 100%
%v/v = 0.047 %
<u>Answer:</u> The above reaction is non-spontaneous.
<u>Explanation:</u>
For the given chemical reaction:

Here, nickel is getting reduced because it is gaining electrons and iron is getting oxidized because it is loosing electrons.
We know that:

Substance getting oxidized always act as anode and the one getting reduced always act as cathode.
To calculate the
of the reaction, we use the equation:


Relationship between standard Gibbs free energy and standard electrode potential follows:

As, the standard electrode potential of the cell is coming out to be negative for the above cell. Thus, the standard Gibbs free energy change of the reaction will become positive making the reaction non-spontaneous.
Hence, the above reaction is non-spontaneous.
Using the Equation: PV=nRT
Where P is the pressure 60 cmHg or 600 mmHg or 600/760= 0.789 atm
V is the volume 125 ml or 0.125 L, n is the number of moles, R is a constant 0.082057, and T is temperature 25 °C or 298 K;
Therefore:
0.789 × 0.125 = n × 0.082057 × 298
n = 0.0987/24.45
= 0.004036 mol
0.004036 mole has a mass of 0.286 g
Hence; 1 mole has a mass of 0.286/0.004036
= 70.8 g /mol
Therefore the molar mass of the gas is 71 g/mol (2 sfg)
4.003 is the mass of helium gas