Distance = Speed * Time
D = 25.6 * 4
D = 102.4 miles
In short, Your Final Answer would be: 102.4 miles
Hope this helps!
Answer:
There is no significant evidence which shows that there is a difference in the driving ability of students from West University and East University, <em>assuming a significance level 0.1</em>
Step-by-step explanation:
Let p1 be the proportion of West University students who involved in a car accident within the past year
Let p2 be the proportion of East University students who involved in a car accident within the past year
Then
p1=p2
p1≠p2
The formula for the test statistic is given as:
z=
where
- p1 is the <em>sample</em> proportion of West University students who involved in a car accident within the past year (0.15)
- p2 is the <em>sample</em> proportion of East University students who involved in a car accident within the past year (0.12)
- p is the pool proportion of p1 and p2 (
) - n1 is the sample size of the students from West University (100)
- n2 is the sample size ofthe students from East University (100)
Then we have z=
≈ 0.6208
Since this is a two tailed test, corresponding p-value for the test statistic is ≈ 0.5347.
<em>Assuming significance level 0.1</em>, The result is not significant since 0.5347>0.1. Therefore we fail to reject the null hypothesis at 0.1 significance
Answer:
Option b. 12 teaspoons.
Step-by-step explanation:
In the question it given :
1 cup = 16 tablespoons
1 tablespoon = 3 teaspoons
16 tablespoon = 48 teaspoons or 1 cup
A recipe calls for 1/4 cup of broth. Tabitha has only a teaspoon to measure broth.
1 cup broth = 48 teaspoons
1/4 cup broth = 48 ×
= 12 teaspoons
Tabitha should use 12 teaspoons of broth.
Yes. x=3 and y =9 are the solutions.
Because if you change x=3 and y =9 ,you will have
3+2* 9 =21
3+18 =21
21 =21 (true)
Answer:
Due to the higher z-score, David has the higher standardized score
Step-by-step explanation:
Z-score:
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Which student has the higher standardized score
Whoever had the higher z-score.
David:
Scores on Ms. Bond's test have a mean of 70 and a standard deviation of 11. David has a score of 52 on Ms. Bond's test. So 



Steven:
Scores on Ms. Nash's test have a mean of 64 and a standard deviation of 6. Steven has a score of 52 on Ms. So 



Due to the higher z-score, David has the higher standardized score