We have this following information
30-seconds ad = $146000
The manufacturer wants to use one slot of 30-second per segment
Total segment = 20 segment
Total campaign cost = 20×146000 = $2,920,000
Answer:
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.
Step-by-step explanation:
We have a sample of executives, of size n=160, and the proportion that prefer trucks is 26%.
We have to calculate a 95% confidence interval for the proportion.
The sample proportion is p=0.26.
The standard error of the proportion is:
The critical z-value for a 95% confidence interval is z=1.96.
The margin of error (MOE) can be calculated as:

Then, the lower and upper bounds of the confidence interval are:

The 95% confidence interval for the population proportion is (0.192, 0.328).
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.
Answer:
sin−1(StartFraction 8.9 Over 10.9 EndFraction) = x
Step-by-step explanation:
From the given triangle JKL;
Hypotenuse KJ = 10.9
Length LJ is the opposite = 8.9cm
The angle LKJ is the angle opposite to side KJ = x
Using the SOH CAH TOA Identity;
sin theta = opp/hyp
sin LKJ = LJ/KJ
Sinx = 8.9/10.9
x = arcsin(8.9/10.9)
sin−1(StartFraction 8.9 Over 10.9 EndFraction) = x
All you have to do is substitute all the Xs to and get a final y output.
for example:
if we take the number x is -1 all you do is:
y=-4(-1)+2
y=4+2
y=6
thats the first one done