Answer:
=(k−1)*P(X>k−1) or (k−1)365k(365k−1)(k−1)!
Step-by-step explanation:
First of all, we need to find PMF
Let X = k represent the case in which there is no birthday match within (k-1) people
However, there is a birthday match when kth person arrives
Hence, there is 365^k possibilities in birthday arrangements
Supposing (k-1) dates are placed on specific days in a year
Pick one of k-1 of them & make it the date of the kth person that arrives, then:
The CDF is P(X≤k)=(1−(365k)k)/!365k, so the can obtain the PMF by
P(X=k) =P (X≤k) − P(X≤k−1)=(1−(365k)k!/365^k)−(1−(365k−1)(k−1)!/365^(k−1))=
(k−1)/365^k * (365k−1) * (k−1)!
=(k−1)*(1−P(X≤k−1))
=(k−1)*P(X>k−1)
Answer: The distance between the girls is 362.8 meters.
Step-by-step explanation:
So we have two triangle rectangles that have a cathetus in common, with a length of 160 meters.
The adjacent angle to this cathetus is 40° for Anna, then the opposite cathetus (the distance between Anna and the tower) can be obtained with the relationship:
Tan(A) = opposite cath/adjacent cath.
Tan(40°) = X/160m
Tan(40°)*160m = 134.3 m
Now, we can do the same thing for Veronica, but in this case the angle adjacent to the tower is 55°
So we have:
Tan(55°) = X/160m
Tan(55°)*160m = X = 228.5 m
And we know that the girls are in opposite sides of the tower, so the distance between the girls is equal to the sum of the distance between each girl and the tower, then the distance between the girls is:
Dist = 228.5m + 134.3m = 362.8m
The answer is 8 marbles. 6*8=48. 48(ednas marbles) + 8(sam's marbles)=56.
Answer:
-12x - 9xy
Step-by-step explanation:
-3x(4x - 5xy + 8y)
distribute
-12x + <u>15xy - 24xy</u>
combine like terms
-12x - 9xy