Answer:
2OH^-(aq) + Cu^2+(aq) -----> Cu(OH)2(s)
Explanation:
The net ionic equation usually shows the main ionic reaction that goes in the system. The other ions that do not participate in this net ionic equation are called spectator ions. Spectator ions do not participate in the main reaction occurring in the system.
The net ionic equation quite often result in the formation of a solid precipitate in the system such as Cu(OH)2.
The net ionic equation for this reaction is;
2OH^-(aq) + Cu^2+(aq) -----> Cu(OH)2(s)
Answer:
Molar concentration of the Fe³⁺ in the unknown solution is 8.01x10⁻⁵M.
Explanation:
When you make a calibration curve in a spectrophotographic analysis you are applying the Lambert-Beer law that states the concentration of a compound is directely proportional to its absorbance:
A = E*l*C
<em>Where A is absorbance, E is molar absorption coefficient, l is optical path length and C is molar concentration</em>
<em />
Using the equation of the line you obtain:
y = 4541.6X + 0.0461
<em>Where Y is absorbance and X is concentration -We will assume concentration is given in molarity-</em>
As absorbance of the unknown is 0.410:
0.410 = 4541.6X + 0.0461
X = 8.01x10⁻⁵M
<h3>Molar concentration of the Fe³⁺ in the unknown solution is 8.01x10⁻⁵M.</h3>
<em />
Answer:
Micky Mo is suffering from respiratory acidosis.
Explanation:
The pCO2 level in micky"s body is higher than normal it means the excess amount of CO2 will reacts with water to generate carbonic acid(H2CO3).
On the other hand according to the question total HCO3- also higher than normal.As a result the excess HCO3- will react with proton to form carbonic acid which is in turn dissociate to generate CO2 and H2O to maintain normal acid base homeostasis.
From that point of view it can be said Micky Mo is suffering from respiratory acidosis.
Answer:

Explanation:
Hello,
In this case, we apply the Gay-Lussac's law which allows us to understand the pressure-temperature behavior as a directly proportional relationship:

Thus, we solve for the final pressure P2 to obtain it as shown below:

Hence, we notice that the temperature doubles as well as the pressure.
Best regards.
Answer:
Volume of container = 0.0012 m³ or 1.2 L or 1200 ml
Explanation:
Volume of butane = 5.0 ml
density = 0.60 g/ml
Room temperature (T) = 293.15 K
Normal pressure (P) = 1 atm = 101,325 pa
Ideal gas constant (R) = 8.3145 J/mole.K)
volume of container V = ?
Solution
To find out the volume of container we use ideal gas equation
PV = nRT
P = pressure
V = volume
n = number of moles
R = gas constant
T = temperature
First we find out number of moles
<em>As Mass = density × volume</em>
mass of butane = 0.60 g/ml ×5.0 ml
mass of butane = 3 g
now find out number of moles (n)
n = mass / molar mass
n = 3 g / 58.12 g/mol
n = 0.05 mol
Now put all values in ideal gas equation
<em>PV = nRt</em>
<em>V = nRT/P</em>
V = (0.05 mol × 8.3145 J/mol.K × 293.15 K) ÷ 101,325 pa
V = 121.87 ÷ 101,325 pa
V = 0.0012 m³ OR 1.2 L OR 1200 ml