<em>Greetings from Brasil...</em>
We need to use the Sine Law in Any Triangle....
(AB/SEN C) = (BC/SEN A)
19/SEN X = 16/SEN32
SEN X = 0,62
<em>using the sine arc</em>
ARC SEN 0,62 ≈ 39
8x+6y=1920
Y=40+x
8x+6(40+x)=1920
Solve for x
X=120
Y=40+120=160
The answer would be 64, because 25% is a quarter of 100. That means you would have to multiply 16 by 4.
<span>Use the formula: r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ] where k = 0,1,2,3,4
</span><span>First 5th root:
k = 0
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*0)/5 ) + i*sin( (280+360*0)/5 ) ]
2*[ cos( (280+360*0)/5 ) + i*sin( (280+360*0)/5 ) ]
2*[ cos( (280+0)/5 ) + i*sin( (280+0)/5 ) ]
2*[ cos( 280/5 ) + i*sin( 280/5 ) ]
2*[ cos( 56 ) + i*sin( 56 ) ]
-------------------------------------------------------------------
Second 5th root:
k = 1
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*1)/5 ) + i*sin( (280+360*1)/5 ) ]
2*[ cos( (280+360*1)/5 ) + i*sin( (280+360*1)/5 ) ]
2*[ cos( (280+360)/5 ) + i*sin( (280+360)/5 ) ]
2*[ cos( 640/5 ) + i*sin( 640/5 ) ]
2*[ cos( 128 ) + i*sin( 128 ) ]
-------------------------------------------------------------------
Third 5th root:
k = 2
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*2)/5 ) + i*sin( (280+360*2)/5 ) ]
2*[ cos( (280+360*2)/5 ) + i*sin( (280+360*2)/5 ) ]
2*[ cos( (280+720)/5 ) + i*sin( (280+720)/5 ) ]
2*[ cos( 1000/5 ) + i*sin( 1000/5 ) ]
2*[ cos( 200 ) + i*sin( 200 ) ]
-------------------------------------------------------------------
Fourth 5th root:
k = 3
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*3)/5 ) + i*sin( (280+360*3)/5 ) ]
2*[ cos( (280+360*3)/5 ) + i*sin( (280+360*3)/5 ) ]
2*[ cos( (280+1080)/5 ) + i*sin( (280+1080)/5 ) ]
2*[ cos( 1360/5 ) + i*sin( 1360/5 ) ]
2*[ cos( 272 ) + i*sin( 272 ) ]
-------------------------------------------------------------------
Fifth 5th root:
k = 4
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*4)/5 ) + i*sin( (280+360*4)/5 ) ]
2*[ cos( (280+360*4)/5 ) + i*sin( (280+360*4)/5 ) ]
2*[ cos( (280+1440)/5 ) + i*sin( (280+1440)/5 ) ]
2*[ cos( 1720/5 ) + i*sin( 1720/5 ) ]
2*[ cos( 344 ) + i*sin( 344 ) ]</span>