Answer:
The volume of foam needed to fill the box is approximately 2926.1 cubic inches.
Step-by-step explanation:
To calculate the amount of foaming that is needed to fill the rest of the box we first need to calculate the volume of the box and the volume of the ball. Since the box is cubic it's volume is given by the formula below, while the formula for the basketball, a sphere, is also shown.
Vcube = a³
Vsphere = (4*pi*r³)/3
Where a is the side of the box and r is the radius of the box. The radius is half of the diameter. Applying the data from the problem to the expressions, we have:
Vcube = 15³ = 3375 cubic inches
Vsphere = (4*pi*(9.5/2)³)/3 = 448.921
The volume of foam there is needed to complete the box is the subtraction between the two volumes above:
Vfoam = Vcube - Vsphere = 3375 - 448.921 = 2926.079 cubic inches
The volume of foam needed to fill the box is approximately 2926.1 cubic inches.
Let the no. Of boys=x and that of girls=y.
The total no. Of students = x+y .
As given by statement the no. Of boys=x={(x+y)/3} + 5
This implies that
X=(x+y+15)/3
Also we know that x/y = 2/3 therefore
From this equation we get x=2y/3 and y=3x/2
By method of substitution we get
X=(x+3x/2+15)/3
•x=(15x+90)/2
•2x=15x+90
•-13x=90
X= -90/13
Now. Y= 3x/2=-270/26
Therefore total
no. Of students= -270/26+(-90/13)
•no. Of students= -450/26
According to me this is an imaginary question i mean how can their be a negative person
Answer:
The answer is


Step-by-step explanation:
we know that


In this problem we have


so
The angle
belong to the third or fourth quadrant
The value of
is negative
Step 1
Find the value of 
Remember

we have

substitute



------> remember that the value is negative
Step 2
Find the value of 

we have


substitute


Answer:
P(-2,7)
P'(-2,-7), ANSWER
reflection across the x-axis rule:
(×,y) ===> (x,-y)
Easy way to do this is draw the point on graph paper and count the same units above/below the x-axis. This example you are 7 units above the x-axis so you would count 7 units below the x-axis giving you the point.
In your problem:
p = 18.3% = 0.183
n = 130
The standard error can be calculated by the formula:
SE = √[p · (1 - p) / n]
= √[0.183 · (1 - 0.183) / 130]
= 0.0339
The standard error of the proportion is 0.034.