ANSWER

EXPLANATION
The given expression is;

We factor to obtain;

Multiply by the reciprocal of the second fraction

Cancel out common factors to get,


Answer:
There is a 38.97% probability that this student earned an A on the midterm.
Step-by-step explanation:
The first step is that we have to find the percentage of students who got an A on the final exam.
Suppose 13% students earned an A on the midterm. Of those students who earned an A on the midterm, 47% received an A on the final, and 11% of the students who earned lower than an A on the midterm received an A on the final.
This means that
Of the 13% of students who earned an A on the midterm, 47% received an A on the final. Also, of the 87% who did not earn an A on the midterm, 11% received an A on the final.
So, the percentage of students who got an A on the final exam is

To find the probability that this student earned an A on the final test also earned on the midterm, we divide the percentage of students who got an A on both tests by the percentage of students who got an A on the final test.
The percentage of students who got an A on both tests is:

The probability that the student also earned an A on the midterm is

There is a 38.97% probability that this student earned an A on the midterm.
The answer
ellipse main equatin is as follow:
X²/ a² + Y²/ b² =1, where a≠0 and b≠0
for the first equation: <span>x = 3 cos t and y = 8 sin t
</span>we can write <span>x² = 3² cos² t and y² = 8² sin² t
and then </span>x² /3²= cos² t and y²/8² = sin² t
therefore, x² /3²+ y²/8² = cos² t + sin² t = 1
equivalent to x² /3²+ y²/8² = 1
for the second equation, <span>x = 3 cos 4t and y = 8 sin 4t we found
</span>x² /3²+ y²/8² = cos² 4t + sin² 4t=1
Answer:
An eight-digit grid coordinate gives a precision to the nearest 10 meters
Step-by-step explanation:
Grid coordinates are meant to accurately direct to a specific location, using a map that comes with vertical and horizontal lines of equal spacing and numbers attached to each line to map out a location. The crossing vertical and horizontal lines have unique numbers and form small squares known as grid squares.
The more digits in the coordinate of a point the increase in precision an eight- digit gives a precision to the nearest 10 meters