Answer:
One sample t-test for population mean would be the most appropriate method.
Step-by-step explanation:
Following is the data which botanist collected and can use:
- Sample mean
- Sample Standard Deviation
- Sample size (Which is 10)
- Distribution is normal
We have to find the best approach to construct the confidence interval for one-sample population mean. Two tests are used for constructing the confidence interval for one-sample population mean. These are:
- One-sample z test for population mean
- One-sample t test for population mean
One sample z test is used when the distribution is normal and the population standard deviation is known to us. One sample t test is used when the distribution is normal, population standard deviation is unknown and sample standard deviation is known.
Considering the data botanist collected, One-sample t test would be the most appropriate method as we have all the required data for this test. Using any other test will result in flawed intervals and hence flawed conclusions.
Therefore, One-sample t-test for population mean would be the most appropriate method.
Answer:
There is not sufficient evidence to warrant the rejection of the claim that the mean weight of cereal is atleast 14 oz
Step-by-step explanation:
The hypothesis for the test above will be stated as follows :
The claim to be tested is the alternative hypothesis, which is the negation of the Null hypothesis
H0 : μ < 14
H1 : μ ≥ 14
If the Null is rejected, then it means that the company's claim that the mean weight of its cereal being atleast 14 is valid ;
Then it means there is significant evidence to support the stance that the mean weight of cereal in the company's packet is atleast 14 oz.
Answer:
77.76 times
Step-by-step explanation:
The average distance of Neptune from the sun
= 4.503 × 10
⁹ k
m
.
and Mercury = 5.791 × 10
⁷ k
m
.
Hence neptune is ( 4.503 × 10
⁹) ÷ (5.791
×
10
⁷ ) times farther from the sun than mercury
i.e.(
) × 10⁹⁻⁷ times
=
0.7776 × 10
² times
=
77.76 times.
The paraboloid meets the x-y plane when x²+y²=9. A circle of radius 3, centre origin.
<span>Use cylindrical coordinates (r,θ,z) so paraboloid becomes z = 9−r² and f = 5r²z. </span>
<span>If F is the mean of f over the region R then F ∫ (R)dV = ∫ (R)fdV </span>
<span>∫ (R)dV = ∫∫∫ [θ=0,2π, r=0,3, z=0,9−r²] rdrdθdz </span>
<span>= ∫∫ [θ=0,2π, r=0,3] r(9−r²)drdθ = ∫ [θ=0,2π] { (9/2)3² − (1/4)3⁴} dθ = 81π/2 </span>
<span>∫ (R)fdV = ∫∫∫ [θ=0,2π, r=0,3, z=0,9−r²] 5r²z.rdrdθdz </span>
<span>= 5∫∫ [θ=0,2π, r=0,3] ½r³{ (9−r²)² − 0 } drdθ </span>
<span>= (5/2)∫∫ [θ=0,2π, r=0,3] { 81r³ − 18r⁵ + r⁷} drdθ </span>
<span>= (5/2)∫ [θ=0,2π] { (81/4)3⁴− (3)3⁶+ (1/8)3⁸} dθ = 10935π/8 </span>
<span>∴ F = 10935π/8 ÷ 81π/2 = 135/4</span>
Answer:
455 or 680, depending
Step-by-step explanation:
If we assume the three choices are different, then there are ...
15C3 = 15·14·13/(3·2·1) = 35·13 = 455
ways to make the pizza.
___
If two or three of the topping choices can be the same, then there are an additional ...
2(15C2) +15C1 = 2·105 +15 = 225
ways to make the pizza, for a total of ...
455 + 225 = 680
different types of pizza.
__
There is a factor of 2 attached to the number of choices of 2 toppings, because you can have double anchovies and tomato, or double tomato and anchovies, for example, when your choice of two toppings is anchovies and tomato.
_____
nCk = n!/(k!(n-k)!)