<u>ANSWER</u>
![\sqrt[3]{- 729{a}^{9} {b}^{6} } = - 9 {a}^{3} {b}^{2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-%20729%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%20%7D%20%20%3D%20%20-%209%20%7Ba%7D%5E%7B3%7D%20%7Bb%7D%5E%7B2%7D%20)
<u>EXPLANATION</u>
We want to find the cube root of

We express this symbolically as:
![\sqrt[3]{- 729 {a}^{9} {b}^{6} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B-%20729%20%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%20%7D%20)
The expression under the radical called the radicand.
We need to express this radical in exponential form using the property,
![{x}^{ \frac{m}{n} } = \sqrt[n]{ {x}^{m} }](https://tex.z-dn.net/?f=%20%7Bx%7D%5E%7B%20%5Cfrac%7Bm%7D%7Bn%7D%20%7D%20%20%3D%20%20%5Csqrt%5Bn%5D%7B%20%7Bx%7D%5E%7Bm%7D%20%7D%20)
Applying this rule gives us:
![\sqrt[3]{- 729 {a}^{9} {b}^{6} } = ({- 729 {a}^{9} {b}^{6}})^{ \frac{1}{3} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-%20729%20%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%20%7D%20%20%3D%20%20%28%7B-%20729%20%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%7D%29%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20)
![\sqrt[3]{- 729{a}^{9} {b}^{6} } = ({- {9}^{3} {a}^{9} {b}^{6}})^{ \frac{1}{3} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-%20729%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%20%7D%20%20%3D%20%20%28%7B-%20%7B9%7D%5E%7B3%7D%20%20%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%7D%29%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20)
Recall that

We apply this rule on the RHS to get,
![\sqrt[3]{- 729{a}^{9} {b}^{6} } = ({- {9}^{3 \times { \frac{1}{3} } } {a}^{9 \times { \frac{1}{3} } } {b}^{6 \times { \frac{1}{3} } }})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-%20729%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%20%7D%20%20%3D%20%20%28%7B-%20%7B9%7D%5E%7B3%20%5Ctimes%20%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%20%20%7Ba%7D%5E%7B9%20%5Ctimes%20%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%20%20%7Bb%7D%5E%7B6%20%5Ctimes%20%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%7D%7D%29)
This simplifies to
![\sqrt[3]{- 729{a}^{9} {b}^{6} } = - 9 {a}^{3} {b}^{2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-%20729%7Ba%7D%5E%7B9%7D%20%20%7Bb%7D%5E%7B6%7D%20%7D%20%20%3D%20%20-%209%20%7Ba%7D%5E%7B3%7D%20%7Bb%7D%5E%7B2%7D%20)
I think the best way to show the results in a chart format is to put zero to twelve on the y-axis or vertically and zero to one hundred on the x-axis or horizontally. Label the y-axis total per roll and the x-axis roll number.Then plot the coordinates or pairs from the table.
We know that
volume of <span>a rectangular prism =B*h------> equation 1
where
B is the area of the base
h is the height
volume of </span><span>a rectangular pyramid=(1/3)*B*h-----> equation 2
where
</span>B is the area of the base
h is the height
<span>
substitute equation 1 in equation 2
</span>volume of a rectangular pyramid=(1/3)*volume of a rectangular prism
<span>
the answer part a) is
</span>volume of a rectangular pyramid=(1/3)*volume of a rectangular prism
<span>
Part b) </span><span>If the pyramid was full of water, how much of the prism would it fill up?
</span>
the answer part b) is
<span>If the pyramid was filled with water, the prism would only fill 1/3 of its volume
Part c) </span><span>Name another pair of three-dimensional objects that have a relationship similar to this
cones and cylinders
</span>volume of a cylinder =B*h------> equation 1
where
B is the area of the base
h is the height <span>
</span>volume of a cone=(1/3)*B*h-----> equation 2
where
B is the area of the base
h is the height
substitute equation 1 in equation 2
volume of a cone=(1/3)*volume of a cylinder
Answer:
Step-by-step explanation:
the answer is 67
The answer is A because a sample of 500 boys and girls from middle schools across the state represents the population.