<span>On an indifference curve, all bundles give the same amount of utility. (32,8) gives a utility of
U(32,8)=32x8=256
If (4,y) is on the same indifference curve, then it must give the same utility. Hence,
256 = 4y
y=64
64 bananas</span>
First thing to do is to illustrate the problem, Since it was mentioned that work was along the way to training, the order is shown in the picture. Mary's home and workplace are nearer compared to her training center. It is also mentioned that the distance between work and home, denoted as x, is 2/3 of the total distance from home to training. The total distance is (x + 2.5). Thus,
x = 2/3(x+2.5)
x = 2/3 x + 5/3
1/3 x = 5/3
x = 5 km
Thus, the distance from home to work is 5 km. This means that Mary has to walk this distance twice to return home to get her shoes. Then, she will travel again the total distance of 5+2.5 = 7.5 km to get to her training center. So,
Total distance = 2(5km) + 7.5 km
Total distance = 17.5 km
Wei la dooblave hexagono 8 solutes x n o solutes = questionnairre
To find the time at which both balls are at the same height, set the equations equal to each other then solve for t.
h = -16t^2 + 56t
h = -16t^2 + 156t - 248
-16t^2 + 56t = -16t^2 + 156t - 248
You can cancel out the -16t^2's to get
56t = 156t - 248
=> 0 = 100t - 248
=> 248 = 100t
=> 2.48 = t
Using this time value, plug into either equation to find the height.
h = 16(2.48)^2 + 56(2.48)
Final answer:
h = 40.4736
Hope I helped :)