Answer:
60
Step-by-step explanation:
Answer:
3rd graph down
Step-by-step explanation:
greens are x and carrots are y in my equations
2x - y >= 3
x + 2y < 4
The first equation is solid and will highlight everything to the right of it because it is a >
the second is dashed and will highlight everything to the left of it because it is a <
the only 2 graphs that show this are 1 and 3
looking at the points you can see that the points for the solid line are both the same so ignore those and go to the dashed lined ones.
on the first graph the points are (0,4)
plugging those into our equation gives us 0 + 2*4 <4
or 8<4 which doesnt make sense making 3 the correct graph
(sorry my answer wasnt posting so i had to start over and make it less detailed, but comment if you need any explanation)
Answer: 999 games
Step-by-step explanation:
There are many ways to illustrate the rooted tree model to calculate the number of games that must be played until only one player is left who has not lost.
We could go about this manually. Though this would be somewhat tedious, I have done it and attached it to this answer. Note that when the number of players is odd, an extra game has to be played to ensure that all entrants at that round of the tournament have played at least one game at that round. Note that there is no limit on the number of games a player can play; the only condition is that a player is eliminated once the player loses.
The sum of the figures in the third column is 999.
We could also use the formula for rooted trees to calculate the number of games that would be played.

where i is the number of "internal nodes," which represents the number of games played for an "<em>m</em>-ary" tree, which is the number of players involved in each game and l is known as "the number of leaves," in this case, the number of players.
The number of players is 1000 and each game involves 2 players. Therefore, the number of games played, i, is given by

What are you trying to find X or Y ?