Answer:
6 units
Step-by-step explanation:
Given: Points H and F lie on circle with center C. EG = 12, EC = 9 and ∠GEC = 90°.
To find: Length of GH.
Sol: EC = CH = 9 (Radius of the same circle are equal)
Now, GC = GH + CH
GC = GH + 9
Now In ΔEGC, using pythagoras theorem,
......(ΔEGC is a right triangle)





Now, Let GH = <em>x</em>

On rearranging,




So x = 6 and x = - 24
∵ x cannot be - 24 as it will not satisfy the property of right triangle.
Therefore, the length of line segment GH = 6 units. so, Option (D) is the correct answer.
Answer:
a.0.8664
b. 0.23753
c. 0.15866
Step-by-step explanation:
The comptroller takes a random sample of 36 of the account balances and calculates the standard deviation to be N42.00. If the actual mean (1) of the account balances is N175.00, what is the probability that the sample mean would be between
a. N164.50 and N185.50?
b. greater than N180.00?
c. less than N168.00?
We solve the above question using z score formula
z = (x-μ)/σ/√n where
x is the raw score,
μ is the population mean = N175
σ is the population standard deviation = N42
n is random number of sample = 36
a. Between N164.50 and N185.50?
For x = N 164.50
z = 164.50 - 175/42 /√36
z = -1.5
Probability value from Z-Table:
P(x = 164.50) = 0.066807
For x = N185.50
z = 185.50 - 175/42 /√36
z =1.5
Probability value from Z-Table:
P(x=185.50) = 0.93319
Hence:
P(x = 185.50) - P(x =164.50)
= 0.93319 - 0.066807
= 0.866383
Approximately = 0.8664
b. greater than N180.00?
x > N 180
Hence:
z = 180 - 175/42 /√36
z = 5/42/6
z = 5/7
= 0.71429
Probability value from Z-Table:
P(x<180) = 0.76247
P(x>180) = 1 - P(x<180) = 0.23753
c. less than N168.00?
x < N168.
z = 168 - 175/42 /√36
z = -7/42/6
z = -7/7
z = -1
Probability value from Z-Table:
P(x<168) = 0.15866
Answer: f(x) = (x + 3)(x – 7)
Step-by-step explanation: Use "standard form" of the function and insert values given: vertex (2,-25) intercept point (7,0)
f(x) = a(x-h)² + k from vertex, h is 2 y is -25 from intercept, x is 7 f(x) is 0
to find a, 0 = a(7-2)² +(-25) 0 = a(7-2)² -25 add 25 to both sides
25 = a(5)² 25 = 25a 25/25 = a 1=a (seems useless but verifies implied "a"coefficient is 1)
f(x) = a(x-h)² + k solve to get the quadratic form
f(x) = (x-2)² -25 (x - 2)² is x² -4x +4
f(x) = x² -4x +4 -25 simplify
f(x) = x² -4x - 21 then factor
f(x) = (x + 3)(x - 7)
Important: Please use " ^ " to indicate exponentiation:
<span>"f(x) =x^2 to the number of x-intercepts in the graph of g(x) = x^2 +2."
Notes: the graph of f(x) = x^2 is a vertical parabola that opens up. It has its vertex at (0,0). This is the only point at which f(x)=x^2 has a horiz. intercept.
g(x) = x^2 + 2 has a graph that looks the same as that of f(x) = x^2, EXCEPT that the whole graph is moved 2 units UP. This new graph never touches or intersects the x-axis. Therefore, g(x) has NO horiz. intercepts (no x-int.).
</span>
Answer:
Misty is 7
Step-by-step explanation:
84=7*12
12-7= 5 year difference