Answer:
No. of gonjas = 52
No. of more nzemas than fantes = 78
Step-by-step explanation:
Total no. of people = 520
No. of fantes =
× 520
No. of fantes = 156
No. of ewes =
× 520 = 130
No. of nzemas =
× 520 = 78
No. of gas =
× 520 = 104
No. of gonjas = 520 - (156 + 130 + 78 + 104) = 52
No. of fantes = 156
No. of nzemas = 78
No. of more nzemas than fantes = 156 - 78 = 78
Pie chart of the following problem is shown below.
Answer:
The Heading should be Bold and Capital
Step-by-step explanation:
LIKE THIS :)
Answer:
Cardiac output:
Step-by-step explanation:
Given : The dye dilution method is used to measure cardiac output with 3 mg of dye.
To Find : Find the cardiac output.
Solution:
Formula of cardiac output:
---1
A = 3 mg

Do, integration by parts
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[20t\int{e^{-0.6t} \,dt}-\int[\frac{d[20t]}{dt}\int {e^{-0.6t} \, dt]dt]^{10}_0](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B20t%5Cint%7Be%5E%7B-0.6t%7D%20%5C%2Cdt%7D-%5Cint%5B%5Cfrac%7Bd%5B20t%5D%7D%7Bdt%7D%5Cint%20%7Be%5E%7B-0.6t%7D%20%5C%2C%20dt%5Ddt%5D%5E%7B10%7D_0)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20}{0.6}\int {e^{-0.6t} \,dt]^{10}_0](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-20te%5E%7B-0.6t%7D%7D%7B0.6%7D%2B%5Cfrac%7B20%7D%7B0.6%7D%5Cint%20%7Be%5E%7B-0.6t%7D%20%5C%2Cdt%5D%5E%7B10%7D_0)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20e^{-0.6t}}{(0.6)^2}]^{10}_{0}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-20te%5E%7B-0.6t%7D%7D%7B0.6%7D%2B%5Cfrac%7B20e%5E%7B-0.6t%7D%7D%7B%280.6%29%5E2%7D%5D%5E%7B10%7D_%7B0%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-200e^{-6}}{0.6}+\frac{20e^{-6}}{(0.6)^2}]+\frac{20}{(0.60^2}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-200e%5E%7B-6%7D%7D%7B0.6%7D%2B%5Cfrac%7B20e%5E%7B-6%7D%7D%7B%280.6%29%5E2%7D%5D%2B%5Cfrac%7B20%7D%7B%280.60%5E2%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=\frac{20(1-e^{-6}}{(0.6)^2}-\frac{200e^{-6}}{0.6}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5Cfrac%7B20%281-e%5E%7B-6%7D%7D%7B%280.6%29%5E2%7D-%5Cfrac%7B200e%5E%7B-6%7D%7D%7B0.6%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0\sim {54.49}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%5Csim%20%7B54.49%7D)
Substitute the value in 1
Cardiac output:
Cardiac output:
Hence Cardiac output:
Answer:
P(working product) = .99*.99*.96*.96 = .0.903
Step-by-step explanation:
For the product to work, all four probabilities must come to pass, so that
P(Part-1)*P(Part-2)*P(Part-3)*P(Part-4)
where
P(Part-1) = 0.96
P(Part-2) = 0.96
P(Part-3) = 0.99
P(Part-4) = 0.99
As all parts are independent, so the formula is P(A∩B) = P(A)*P(B)
P (Working Product) = P(Part-1)*P(Part-2)*P(Part-3)*P(Part-4)
P (Working Product) = 0.96*0.96*0.96*0.99*0.99
P(Working Product) = 0.903
Answer:
Mrs. Wright's paycheck is $630
Step-by-step explanation:
Let x = Mrs. Wright's paycheck.
Mrs. Wright spent 2/9 of her paycheck on food. This means that the amount of money spent on food is 2/9 × x = 2x/9
She spent 1/3 on rent. This means that the amount spent on rent is
1/3 ×x x = x/3
Amount she spent on food and rent is x/3 + 2x/9 =3x + 2x /9
= 5x/9
The remainder is her pay check - the amount that she spent on food and rent. It becomes
x - 5x/9 = (9x- 5x)/9 = 4x/9
She spent 1/4 of the remainder on transportation. It means that she spent 1/4 × 4x/9 = x /9 on transportation.
Amount left = 4x /9 - x/9= 3x/9
She had $210 left. Therefore,
210 = 3x/9
3x = 9×210 = 1890
x = 1890/3
x = $630