Answer:
you must throw 3 snowballs
Explanation:
We can solve this exercise using the concepts of conservation of the moment, let's define the system as formed by the refrigerator and all the snowballs. Let's write the moment
Initial. Before bumping that refrigerator
p₀ = n m v₀
Where n is the snowball number
Final. When the refrigerator moves
pf = (n m + M) v
The moment is preserved because the forces during the crash are internal
n m v₀ = (n m + M) v
n m (v₀ - v) = M v
n = M/m v/(vo-v)
Let's look for the initial velocity of the balls, suppose the person throws them with the maximum force if it slides in the snow (F = 100N), let's use the second law and Newton
F = m a
a = F / m
The distance the ball travels from zero speed to maximum speed is the extension of the arm (x = 1 m), let's look kinematically for the speed of the balls when leaving the arm
v₁² = v₀² + 2 a x
v₁² = 0+ 2 (100/1) 1
v₁ = 14.14 m / s
This is the initial speed for the crash
v₀ = v = 14.14 m / s
Let's calculate
n = M/m v/ (v₀-v)
n = 10/1 3 / (14.14 -3)
n = 2.7 balls
you must throw 3 snowballs
Answer:
(a) Steel rod: 
Copper rod: 
(b) Steel rod: 
Copper rod: 
Explanation:
Length of each rod = 0.75 m
Diameter of each rod = 1.50 cm = 0.015 m
Tensile force exerted = 4000 N
(a) Strain is given as the ratio of change in length to the original length of a body. Mathematically, it is given as
Strain = 
where Y = Young modulus
F = Fore applied
A = Cross sectional area
For the steel rod:
Y = 200 000 000 000 
F = 4000N
A =
(r = d/2 = 0.015/2 = 0.0075 m)
=> A = 
=> A = 0.000177 
∴ 
For the copper rod:
Y = 120 000 000 000 N/m²
F = 4000N
A =
(r = d/2 = 0.015/2 = 0.0075 m)
=> A = 
=> A = 0.000177 

(b) We can find the elongation by multiplying the Strain by the original length of the rods:
Elongation = Strain * Length
For the steel rod:
Elongation = 
For the copper rod:
Elongation =
The heat required to convert the unknown substance X from one phase to another is 1600 J times the specific heat of that substance.
Explanation:
The heat energy required to convert a substance or to heat up or increase the temperature of a substance can be obtained from the specific heat formula.
As per this formula, the heat energy applied should be equal to the product of mass of the substance with temperature gradient and also with specific heat of the substance. Basically, the heat provided to increase or convert a substance should be more than the specific heat of the substance.

Since, here the mass of the substance X is given as m = 20g and the temperature change is given from -10°C to 70°C.
Then ΔT = (70-(-10))=70+10=80°C.
As the substance is unknown, the specific heat of that substance can also not be determined. Hence keep it as C.

Q = 1600C J
Thus, the heat required to convert the unknown substance X from one phase to another is 1600 J times the specific heat of that substance.
Answer:8.3m/sec 30 sec,
Explanation:
A student practicing for a track meet, ran 250 m in 30 sec. a. What was her average speed? 250 m = 8.3 m/sec 30 sec.
I found a definition: Chartjunk<span> refers to all visual elements in </span>charts<span> and graphs that are not necessary to comprehend the information represented on the graph, or that distract the viewer from this information.</span>