Answer:
AB = √18 , BC=√18 and CA =4
AB²+BC² = CA² and AB=BC
ΔABC isosceles right angled triangle.
Step-by-step explanation:
Given vectors are 7j+ 10k,-i + 6j+6k and - 4i + +9j + 6k
A( 0,7,10), B( -1,6,6) C(-4,9,6)
AB⁻ = OB-OA = -I+6j+6k-(7j+10k) = -I-j-4k
AB = 
BC = OC-OB = -4i+9j+6k-(-I+6j+6k) = -3i+3j
BC=
CA = OA-OC = 7j+10k - (- 4i + +9j + 6k ) = 4i-2j+4k
CA = 
Since AB²+BC² = CA²
And AB=BC
Therefore it follows that ΔABC is a right angled isosceles triangle
Answer:
4
Step-by-step explanation:
Given that :
Clients are interviewed in groups of 2 on the first day; meaning two persons at a time
Second day, clients are interviewed in groups of 4; meaning 4 persons at a time.
Therefore, if the same number of clients are to be interviewed on each day, the smallest number of clients that could be interviewed each day could be obtained by getting the Least Common Multiple of both numbers: 2 and 4
- - - - 2 - - - 4
2 - - - 1 - - - 2
2 - - - 1 - - - 1
Therefore, the Least common multiple is (2 * 2) = 4
Therefore, the smallest number of clients that could be interviewed each day is 4.
A sample statistic , such as x bar, that estimates the value of the corresponding population parameter is known as a control chart.
Answer:
<h2>It must be shown that both j(k(x)) and k(j(x)) equal x</h2>
Step-by-step explanation:
Given the function j(x) = 11.6
and k(x) =
, to show that both equality functions are true, all we need to show is that both j(k(x)) and k(j(x)) equal x,
For j(k(x));
j(k(x)) = j[(ln x/11.6)]
j[(ln (x/11.6)] = 11.6e^{ln (x/11.6)}
j[(ln x/11.6)] = 11.6(x/11.6) (exponential function will cancel out the natural logarithm)
j[(ln x/11.6)] = 11.6 * x/11.6
j[(ln x/11.6)] = x
Hence j[k(x)] = x
Similarly for k[j(x)];
k[j(x)] = k[11.6e^x]
k[11.6e^x] = ln (11.6e^x/11.6)
k[11.6e^x] = ln(e^x)
exponential function will cancel out the natural logarithm leaving x
k[11.6e^x] = x
Hence k[j(x)] = x
From the calculations above, it can be seen that j[k(x)] = k[j(x)] = x, this shows that the functions j(x) = 11.6
and k(x) =
are inverse functions.