Vertical angles are angles that share the same vertex or corner point. These angles are the angles opposite each other when two lines cross.
In the image there is only one pair of vertical angles.
Angle TSW and Angle ISN. The share the corner point identified as S.
<span>Answer is: B. Angle ISN and Angle TSW. </span>
Answer: D. 
Step-by-step explanation:
The given sequence: 
Here, first term:
Second term:
Third term : 
It can be observed that it is neither increasing nor decreasing sequence but having the common ratio.
Common ratio: 
So,
[as in G.P. nth term=
]
Hence, correct option is D. 
Answer:
T = 3.967 C
Step-by-step explanation:
Density = mass / volume
Use the mass = 1kg and volume as the equation given V, we will come up with the following equation
D = 1 / 999.87−0.06426T+0.0085043T^2−0.0000679T^3
= (999.87−0.06426T+0.0085043T^2−0.0000679T^3)^-1
Find the first derivative of D with respect to temperature T
dD/dT = 
Let dD/dT = 0 to find the critical value we will get
= 0
Using formula of quadratic, we get the roots:
T = 79.53 and T = 3.967
Since the temperature is only between 0 and 30, pick T = 3.967
Find 2nd derivative to check whether the equation will have maximum value:

Substituting the value with T=3.967,
d2D/dT2 = -1.54 x 10^(-8) a negative value. Hence It is a maximum value
Substitute T =3.967 into equation V, we get V = 0.001 i.e. the volume when the the density is the highest is at 0.001 m3 with density of
D = 1/0.001 = 1000 kg/m3
Therefore T = 3.967 C
Answer:
approximately 12 payments.
Step-by-step explanation:
you can pay off the loan in a year by multiplying 87.25 and 12. this will give you 1047, which is about 28$ off. then after that year, you can pay off the $28 whenever you finish with the 87.25
We can start solving this problem by first identifying what the elements of the sets really are.
R is composed of real numbers. This means that all numbers, whether rational or not, are included in this set.
Z is composed of integers. Integers include all negative and positive numbers as well as zero (it is essentially a set of whole numbers as well as their negated values).
W on the other hand has 0,1,2, and onward as its elements. These numbers are known as whole numbers.
W ⊂ Z: TRUE. As mentioned earlier, Z includes all whole numbers thus W is a subset of it.
R ⊂ W: FALSE. Not all real numbers are whole numbers. Whole numbers must be rational and expressed without fractions. Some real numbers do not meet this criteria.
0 ∈ Z: TRUE. Zero is indeed an integer thus it is an element of Z.
∅ ⊂ R: TRUE. A null set is a subset of R, and in fact every set in general. There are no elements in a null set thus making it automatically a subset of any non-empty set by definition (since NONE of its elements are <u>not</u> an element of R).
{0,1,2,...} ⊆ W: TRUE. The set on the left is exactly what is defined on the problem statement for W. (The bar below the subset symbol just means that the subset is not strict, therefore the set on the left can be <u>equal</u> to the set on the right. Without it, the statement would be false since a strict subset requires that the two sets should not be equal).
-2 ∈ W: FALSE. W is just composed of whole numbers and not of its negated counterparts.