Since the sum of all probabilities of all all elementary events will always be equal to 1. Furthermore, the probabilities of all mutually exclusive set of events that is part of the entire sample space will always be total of 1.
So in the problem, the answer is 1/8.
1/8 for red + 3/8 for green + 3/8 for yellow + 1/8 for blue = 8/8 or 1.
For this case we must write a power between (340,345)
We chose 343.
We divide the number until we get an exact division:

So we have:

So, the power is:

ANswer:

Answer:
As per the given statement:
The region bounded by the given curves about the y-axis,
, y=0, x = 0 and x = 1
Using cylindrical shell method:
The volume of solid(V) is obtained by rotating about y-axis and the region under the curve y = f(x) from a to b is;
where 
where x is the radius of the cylinder
f(x) is the height of the cylinder.
From the given figure:
radius = x
height(h) =f(x) =y=
a = 0 and b = 1
So, the volume V generated by rotating the given region:
![V =2 \pi \int_{0}^{1} x ( 13e^{-x^2}) dx\\\\V=2\pi\left [ -\frac{13}{2}e^{-x^2} \right ]_{0}^{1}\\\\V=2\pi\left (-\frac{13}{2e}-\left(-\frac{13}{2}\right) \right )\\\\V=-\frac{13\pi }{e}+13\pi](https://tex.z-dn.net/?f=V%20%3D2%20%5Cpi%20%5Cint_%7B0%7D%5E%7B1%7D%20x%20%28%2013e%5E%7B-x%5E2%7D%29%20dx%5C%5C%5C%5CV%3D2%5Cpi%5Cleft%20%5B%20-%5Cfrac%7B13%7D%7B2%7De%5E%7B-x%5E2%7D%20%5Cright%20%5D_%7B0%7D%5E%7B1%7D%5C%5C%5C%5CV%3D2%5Cpi%5Cleft%20%28-%5Cfrac%7B13%7D%7B2e%7D-%5Cleft%28-%5Cfrac%7B13%7D%7B2%7D%5Cright%29%20%5Cright%20%29%5C%5C%5C%5CV%3D-%5Cfrac%7B13%5Cpi%20%7D%7Be%7D%2B13%5Cpi%20)
therefore, the volume of V generated by rotating the given region is 
By definition, the average rate of change is given by:

We evaluate each of the functions in the given interval.
We have then:
For f (x) = x ^ 2 + 3x:
Evaluating for x = -2:

Evaluating for x = 3:

Then, the AVR is:




For f (x) = 3x - 8:
Evaluating for x =4:

Evaluating for x = 5:

Then, the AVR is:



For f (x) = x ^ 2 - 2x:
Evaluating for x = -3:

Evaluating for x = 4:

Then, the AVR is:




For f (x) = x ^ 2 - 5:
Evaluating for x = -1:

Evaluating for x = 1:

Then, the AVR is:




Answer:
from the greatest to the least value based on the average rate of change in the specified interval:
f(x) = x^2 + 3x interval: [-2, 3]
f(x) = 3x - 8 interval: [4, 5]
f(x) = x^2 - 5 interval: [-1, 1]
f(x) = x^2 - 2x interval: [-3, 4]
I think the answer would be 24 but im not 100% sure