Answer:
a.
b. 6.1 c. 0.6842 d. 0.4166 e. 0.1194 f. 8.5349
Step-by-step explanation:
a. The distribution of X is normal with mean 6.1 kg. and standard deviation 1.9 kg. this because X is the weight of a randomly selected seedless watermelon and we know that the set of weights of seedless watermelons is normally distributed.
b. Because for the normal distribution the mean and the median are the same, we have that the median seedless watermelong weight is 6.1 kg.
c. The z-score for a seedless watermelon weighing 7.4 kg is (7.4-6.1)/1.9 = 0.6842
d. The z-score for 6.5 kg is (6.5-6.1)/1.9 = 0.2105, and the probability we are seeking is P(Z > 0.2105) = 0.4166
e. The z-score related to 6.4 kg is
and the z-score related to 7 kg is
, we are seeking P(0.1579 < Z < 0.4737) = P(Z < 0.4737) - P(Z < 0.1579) = 0.6821 - 0.5627 = 0.1194
f. The 90th percentile for the standard normal distribution is 1.2815, therefore, the 90th percentile for the given distribution is 6.1 + (1.2815)(1.9) = 8.5349
Answer:
No :)
Step-by-step explanation:
the graph does not make a straight line. :)
The correct answer is C. A 2-column table with 3 rows. Column 1 is labeled x with entries negative 5, 0, 3. Column 2 is labeled y with entries negative 18, negative 2, 10.
Explanation:
The purpose of an equation is to show the equivalence between two mathematical expressions. This implies in the equation "–2 + 4x = y" the value of y should always be the same that -2 + 4x. Additionally, if a table is created with different values of x and y the equivalence should always be true. This occurs only in the third option.
x y
5 -18
0 -2
3 10
First row:
-2 + 4 (5) = y (5 is the value of x which is first multyply by 4)
-2 + 20 = -18 (value of y in the table)
Second row:
-2 + 4 (0) y
-2 + 0 = -2
Third row:
-2 + 4 (3) = y
-2 + 12 = 10
Answer:
The answer is " 0.83"
Step-by-step explanation:
In the question some data is missing, that's value can be defined as follows:
Values:


Formula:

