Answer:
160m/s
Step-by-step explanation:
The object can hit the ground when t = a; meaning that s(a) = s(t) = 0
So, 0 = -16a² + 400
16a² = 400
a² = 25
a = √25
a = 5 (positive 5 only because that's the only physical solution)
The instantaneous velocity is
v(a) = lim(t->a) [s(t) - s(a)]/[t-a)
Where s(t) = -16t² + 400
and s(a) = -16a² + 400
v(a) = Lim(t->a) [-16t² + 400 + 16a² - 400]/(t-a)
v(a) = Lim(t->a) (-16t² + 16a²)/(t-a)
v(a) = lim (t->a) -16(t² - a²)(t-a)
v(a) = -16lim t->a (t²-a²)(t-a)
v(a) = -16lim t->a (t-a)(t+a)/(t-a)
v(a) = -16lim t->a (t+a)
But a = t
So, we have
v(a) = -16lim t->a 2a
v(a) = -32lim t->a (a)
v(a) = -32 * 5
v(a) = -160
Velocity = 160m/s
The volume of the removed portion is 35 cm³.
Step-by-step explanation:
Given,
The length× width× height (L×B×H) of the outer part = 3 cm×3 cm×7 cm
The length× width× height (l×b×h) of the inner part = 2 cm×2 cm×7 cm
To find the volume of the removed portion.
Formula
The volume of the removed portion = volume of outer part - volume of inner part
Volume of rectangular prism = l×b×h
Now,
Volume of outer part = 3×3×7 cm³ = 63 cm³
Volume of inner part = 2×2×7 cm³ = 28 cm³
Hence,
The volume of the removed portion = 63-28 cm³ = 35 cm³
Answer:
4
Step-by-step explanation:
Answer:
Step-by-step explanation:
The given quadratic equation is
2x^2+3x-8 = 0
To find the roots of the equation. We will apply the general formula for quadratic equations
x = -b ± √b^2 - 4ac]/2a
from the equation,
a = 2
b = 3
c = -8
It becomes
x = [- 3 ± √3^2 - 4(2 × -8)]/2×2
x = - 3 ± √9 - 4(- 16)]/2×2
x = [- 3 ± √9 + 64]/2×2
x = [- 3 ± √73]/4
x = [- 3 ± 8.544]/4
x = (-3 + 8.544) /4 or x = (-3 - 8.544) / 4
x = 5.544/4 or - 11.544/4
x = 1.386 or x = - 2.886
The positive solution is 1.39 rounded up to the nearest hundredth
Answer:
<h2>

</h2>
Step-by-step explanation:
Let the length of the rectangle be l
Area of a rectangle = length × width
From the question
Area = 25/42
width = 5/6
Substitute the values into the above formula and solve for the length
That's
<h3>

</h3>
So we have
<h3>

</h3>
We have the final answer as
<h3>

</h3>
Hope this helps you