we are given

Firstly, we will split terms

We can group first two and last two terms

we can see that 2x^2 is common in first two terms
and 3 is common in last two terms
so, we can factor factor out 2x^2 from first group and 3 from second group
we get

we can see that each terms are multiple of 6x-1
so, we can factor out 6x-1
so, we get
............Answer
(a) Data with the eight day's measurement.
Raw data: [60,58,64,64,68,50,57,82],
Sorted data: [50,57,58,60,64,64,68,82]
Sample size = 8 (even)
mean = 62.875
median = (60+64)/2 = 62
1st quartile = (57+58)/2 = 57.5
3rd quartile = (64+68)/2 = 66
IQR = 66 - 57.5 = 8.5
(b) Data without the eight day's measurement.
Raw data: [60,58,64,64,68,50,57]
Sorted data: [50,57,58,60,64,64,68]
Sample size = 7 (odd)
mean = 60.143
median = 60
1st quartile = 57
3rd quartile = 64
IQR = 64 -57 = 7
Answers:
1. The average is the same with or without the 8th day's data. FALSE
2. The median is the same with or without the 8th day's data. FALSE
3. The IQR decreases when the 8th day is included. FALSE
4. The IQR increases when the 8th day is included. TRUE
5. The median is higher when the 8th day is included. TRUE
Well 500 mm = 50 cm so if you add both segments together you will get a 50+30=80cm segment
Answer:
Step-by-step explanation:
Hello!
To test if boys are better in math classes than girls two random samples were taken:
Sample 1
X₁: score of a boy in calculus
n₁= 15
X[bar]₁= 82.3%
S₁= 5.6%
Sample 2
X₂: Score in the calculus of a girl
n₂= 12
X[bar]₂= 81.2%
S₂= 6.7%
To estimate per CI the difference between the mean percentage that boys obtained in calculus and the mean percentage that girls obtained in calculus, you need that both variables of interest come from normal populations.
To be able to use a pooled variance t-test you have to also assume that the population variances, although unknown, are equal.
Then you can calculate the interval as:
[(X[bar]_1-X[bar_2) ±
*
]


[(82.3-81.2) ± 1.708* (6.11*
]
[-2.94; 5.14]
Using a 90% confidence level you'd expect the interval [-2.94; 5.14] to contain the true value of the difference between the average percentage obtained in calculus by boys and the average percentage obtained in calculus by girls.
I hope this helps!