Answer:
this is very confusing to understand that you want.
Step-by-step explanation:
In this specific problem each term is separated by an addition sign , so you have a total of 3 terms . The correct answer is " C."<span />
To solve this we are going to use the formula fro the force applied to a spring:

where

is the spring constant

is the extension
Since we know the

, we can replace that in our formula and solve for

:


where

is the acceleration

is the spring constant

is the extension

is the mass
We know for our problem that

,

, and

. So lets replace those values in our formula to find

:



We can conclude that the acceleration of the block when s=0.4m is

.
Answer:
1) 5
2) 0.2
Step-by-step explanation:
The complete question is attached below.
The x-axis represents the time in hours and y-axis represents the distance in kilometers.
The first question asks how many kilometers, does Kendrick walk per hour. The straight line represents the distance traveled at various amounts of time.
The point marked on the graph is against time = 1 hour and Distance = 5 km. So this shows:
Kendrick walks 5 kilometers in 1 hour.
In next part, we have to find how much time Kendrick takes to walk 1 kilometer.
Since, we know that:
Kendrick walks 5 kilometers in time = 1 hour
Dividing both sides by 5, we can write:
Kendrick walks 1 kilometer in time = 1/5 hour = 0.2 hour
So, Kendrick takes 0.2 hours to walk 1 kilometer.