To work out the volume of a prism, you multiply the area of cross-section by the height (or length).
So for a cylinder, you work out the area of the circle and then multiply it by the height.
Area of circle (or cross-section) = π × radius²
= π × 0.7²
= 0.49π m²
Now to get the volume of the cylinder, you times this area of the cross-section by the height of the cylinder:
Volume = 0.49π × 1.5
= 2.3 m³ (accurate to 2 decimal places)
---------------------------------------------------------------
Answer:
The maximum volume of rainwater the cylinder can hold is:
<u> </u><u>2.3 </u><u>m³</u>
Answer:
The two‑sample t ‑test is not appropriate because the distributions are not normal and the sample sizes are too small.
Step-by-step explanation:
The complete question is:
The owner of a pita franchise with two locations is interested in the average time that customers spend waiting for service at each store. She believes that the average waiting time at the original location is higher than the average waiting time at the new location.
The pita‑franchise owner has observed in the past that waiting times tend to have a long tail to the right, with most customers served relatively quickly and a few rare customers required to wait a very long time.Is a two‑sample t ‑test appropriate in this setting?The two‑sample t ‑test is appropriate because this is a comparison of the means of two continuous, random variables.The two‑sample t ‑test is not appropriate because the two samples do not have the same size.The two‑sample t ‑test is not appropriate because the sample standard deviations are not equal.The two‑sample t ‑test is not appropriate because the distributions are not normal and the sample sizes are too small.The two‑sample t ‑test is appropriate because the samples are random and contain no outliers, and the populations are normal.
For two sample t-test the distributions must be normal. Here the data, as mentioned in the questions is skewed to the right with long waiting times in the past.
Answer
Find out the value of x .
To proof
SAS congurence property
In this property two sides and one angle of the two triangles are equal.
in the Δ ADC and ΔBDC
(1) CD = CD (common side of both the triangle)
(2) ∠CDA = ∠ CDB = 90 °
( ∠CDA +∠ CDB = 180 ° (Linear pair)
as given in the diagram
∠CDA = 90°
∠ CDB = 180 ° - 90°
∠ CDB = 90°)
(3) AD = DB (as shown in the diagram)
Δ ADC ≅ ΔBDC
by using the SAS congurence property .
AC = BC
(Corresponding sides of the congurent triangle)
As given
the length of AC is 2x and the length of BC is 3x - 5 .
2x = 3x - 5
3x -2x =5
x = 5
The value of x is 5 .
Hence proved
Start with second, third and fourth degree of imaginary unit i:

.
Since 233=232+1=4·58+1, then

.
Answer:
Answer:
idk good luck with that one :)
Step-by-step explanation: