We have to determine which value is equivalent to | f ( i ) | if the function is: f ( x ) = 1 - x. We know that for the complex number: z = a + b i , the absolute value is: | z | = sqrt( a^2 + b^2 ). In this case: | f ( i )| = | 1 - i |. So: a = 1, b = - 1. | f ( i ) | = sqrt ( 1^2 + ( - 1 )^2) = sqrt ( 1 + 1 ) = sqrt ( 2 ). Answer: <span>C. sqrt( 2 )</span>
Answer:
1...2....0.5 are the answers
Step-by-step explanation:
dont listen to the other its wrong
Answer: Esy the answer is; C.
Step-by-step explanation:
The higher the negative value the less or lower the number is.
CONFUSING Right? XD
Answer:N10500
Step-by-step explanation:
10%of 14000=1400
20%=1400x2=2800
5%=1400 divided by 2=700
25%=2800+700=3500
14000-3500=10500
hope this helps