Answer:
The volume of foam needed to fill the box is approximately 2926.1 cubic inches.
Step-by-step explanation:
To calculate the amount of foaming that is needed to fill the rest of the box we first need to calculate the volume of the box and the volume of the ball. Since the box is cubic it's volume is given by the formula below, while the formula for the basketball, a sphere, is also shown.
Vcube = a³
Vsphere = (4*pi*r³)/3
Where a is the side of the box and r is the radius of the box. The radius is half of the diameter. Applying the data from the problem to the expressions, we have:
Vcube = 15³ = 3375 cubic inches
Vsphere = (4*pi*(9.5/2)³)/3 = 448.921
The volume of foam there is needed to complete the box is the subtraction between the two volumes above:
Vfoam = Vcube - Vsphere = 3375 - 448.921 = 2926.079 cubic inches
The volume of foam needed to fill the box is approximately 2926.1 cubic inches.
Well, if you take x to be 25 seconds, there are 2.4x in 1min. So, that multiplied by 60, would be 144x. Therefore, 1/4 multiplied by 144x should be the answer.
Answer:
4 Sliders 2 chicken wings
Step-by-step explanation:
4x300=1200 2x80=160
Answer:
B) 28.53 unit²
Step-by-step explanation:
The diagonal AD divides the quadrilateral in two triangles:
- Triangle ABD
- Triangle ACD
Area of Quadrilateral will be equal to the sum of Areas of both triangles.
i.e.
Area of ABCD = Area of ABD + Area of ACD
Area of Triangle ABD:
Area of a triangle is given as:

Base = AB = 2.89
Height = AD = 8.6
Using these values, we get:

Thus, Area of Triangle ABD is 12.43 square units
Area of Triangle ACD:
Base = AC = 4.3
Height = CD = 7.58
Using the values in formula of area, we get:

Thus, Area of Triangle ACD is 16.30 square units
Area of Quadrilateral ABCD:
The Area of the quadrilateral will be = 12.43 + 16.30 = 28.73 units²
None of the option gives the exact answer, however, option B gives the closest most answer. So I'll go with option B) 28.53 unit²