Step-by-step explanation:
PARA ENCONTRAR CUÁNTO MIDE CAD LADO SE DIVIDE EL PERÍMETRO
ENTRE 4 LADOS
l = 1.28 in
LOEGO ENCUENTRAS EL RADIO DE LA PIRÁMIDE
<em>r</em> = 2.55 in
USANDO LA FÓRMULA
V = 4(1.28 in)(2.55 in)(2.7 in)/6 = 
Answer:

Four raised to the one-sixth power
Step-by-step explanation:
We want to simplify: ![\dfrac{\sqrt{4} }{\sqrt[3]{4} }](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%7B4%7D%20%7D%7B%5Csqrt%5B3%5D%7B4%7D%20%7D)
First, we apply the fractional law of indices to each term.
![\text{If } a^{1/x}=\sqrt[x]{a},$ then:\\\sqrt{4}=4^{1/2}\\\sqrt[3]{4}=4^{1/3}](https://tex.z-dn.net/?f=%5Ctext%7BIf%20%20%7D%20a%5E%7B1%2Fx%7D%3D%5Csqrt%5Bx%5D%7Ba%7D%2C%24%20then%3A%5C%5C%5Csqrt%7B4%7D%3D4%5E%7B1%2F2%7D%5C%5C%5Csqrt%5B3%5D%7B4%7D%3D4%5E%7B1%2F3%7D)
We then have:
![\dfrac{\sqrt{4} }{\sqrt[3]{4} }=\dfrac{4^{1/2} }{4^{1/3} }\\$Applying the division law of indices: \dfrac{a^m }{a^n }=a^{m-n}\\\dfrac{4^{1/2} }{4^{1/3} }=4^{1/2-1/3}\\\\=4^{1/6}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%7B4%7D%20%7D%7B%5Csqrt%5B3%5D%7B4%7D%20%7D%3D%5Cdfrac%7B4%5E%7B1%2F2%7D%20%7D%7B4%5E%7B1%2F3%7D%20%7D%5C%5C%24Applying%20the%20division%20law%20of%20indices%3A%20%5Cdfrac%7Ba%5Em%20%7D%7Ba%5En%20%7D%3Da%5E%7Bm-n%7D%5C%5C%5Cdfrac%7B4%5E%7B1%2F2%7D%20%7D%7B4%5E%7B1%2F3%7D%20%7D%3D4%5E%7B1%2F2-1%2F3%7D%5C%5C%5C%5C%3D4%5E%7B1%2F6%7D)
The correct option is B.
Answer:
1,249 cm or 12.49
Whichever one it asks for
Step-by-step explanation:
First, we need to convert all of the m to cm.
4.04 m = 404 cm
1.6 m = 160 cm
2.87 m = 287 cm
Next, add them all up.
325 + 404 + 73 + 160 + 287 =
1,249 cm
If it asks to convert to m again, then the answer would be 12.49 m
Hope this helps!!!
Answer:
5
Step-by-step explanation:
<u>Given</u>:
A = (a, 14-a)
P = (3a, a^2 +13a -11)
the slope of AP is 7
a > 0
<u>Find</u>:
a
<u>Solution</u>:
The slope of AP is ...
m = (Py -Ay)/(Px -Ax)
7 = (a^2 +13a -11 -(14 -a))/(3a -a)
14a = a^2 +14a -25
25 = a^2
a = √25 = 5 . . . . . the positive solution
The value of 'a' is 5.
_____
<em>Check</em>
The point A is (a, 14-a) = (5, 9).
The point P is (3a, a^2 +13a -11) = (15, 79)
The slope of AP is (79 -9)/(15 -5) = 70/10 = 7.