Answer: IX - 4I ≤ 4
Step-by-step explanation:
In the numer line we can see that our possible values of x are in the range:
0 ≤ x ≤ 8
And we want to find an absolute value equation such that this set is the set of possible solutions.
An example can be:
IX - 4I ≤ 4
To construct this, we first find the midpoint M of our set, in this case is 4.
Then we write:
Ix - MI ≤ IMI
Notice that i am using the minor and equal sign, this is because the black dots means that the values x = 0 and x = 8 are included, if the dots were empty dots, it would be an open set and we should use the < > signs.
Answer:
Step-by-step explanation:
We would apply the formula for exponential decay which is expressed as
A = P(1 - r/n)^ nt
Where
A represents the value after t years.
n represents the period for which the decrease in value is calculated
t represents the number of years.
P represents the value population.
r represents rate of decrease.
From the information given,
P = 23000
r = 8% = 8/100 = 0.08
n = 1
Therefore, the exponential decay function described in this situation is
A = 23000(1 - 0.08/n)1)^ 1 × t
A = 23000(0.92)^t
If A = 15000, then
15000 = 23000(0.92)^t
0.92^t = 15000/23000 = 0.6522
Taking log of both sides to base 10
Log 0.92^t = log 0.6522
tlog 0.92 = log 0.6522
- 0.036t = - 0.1856
t = - 0.1856/- 0.036
t = 5 years to the nearest year
58% is about equal to 60%, 10% of 121 is 12.1.
12.1 * 6 = 72.6
To take this further, 58% is 2% less than 60%, or 2 times 1%. 1% of 121 is 1.21.
72.6 - (1.21 * 2) = 72.6 - 2.42 = 70.18