Answer:
<u></u>
Explanation:
The figure attached shows the <em>Venn diagram </em>for the given sets.
<em />
<em><u>a) What is the probability that the number chosen is a multiple of 3 given that it is a factor of 24?</u></em>
<em />
From the whole numbers 1 to 15, the multiples of 3 that are factors of 24 are in the intersection of the two sets: 3, 6, and 12.
There are a total of 7 multiples of 24, from 1 to 15.
Then, there are 3 multiples of 3 out of 7 factors of 24, and the probability that the number chosen is a multiple of 3 given that is a factor of 24 is:
<em><u /></em>
<em><u>b) What is the probability that the number chosen is a factor of 24 given that it is a multiple of 3?</u></em>
The factors of 24 that are multiples of 3 are, again, 3, 6, and 12. Thus, 3 numbers.
The multiples of 3 are 3, 6, 9, 12, and 15: 5 numbers.
Then, the probability that the number chosen is a factor of 24 given that is a multiple of 3 is:
Copy question and paste it and it will show up trust
Answer:
Step-by-step explanation:
Given that Miguel is playing a game
The box contains 4 chips, 2 with number 1, and other two differntly numbered as 3 and 5.
OUt of these 4, 2 chips are drawn
P(drawing same number) = 2C2/4C2 =
Prob (drawing differnt numbers) = 1-1/6 =
Hence prob of winning 2 dollars = 
Prob of losing 1 dollar = 
b) Expected value = sum of prob x amount won
= 
c) Miguel can expect to lose 1/2 dollars for every game he plays
d) If it is to be a fair game expected value =0
i.e. let the amount assigned be s
Then 