answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeX [460]
2 years ago
14

In a constant-volume process, 209 j of energy is transferred by heat to 1.00 mol of an ideal monatomic gas initially at 300 k. f

ind (a) the work done on the gas, (b) the increase in internal energy of the gas, and (c) its final temperature.
Physics
1 answer:
Alexxandr [17]2 years ago
7 0
<span> (a) the work done on the gas

From the definition of work in thermodynamics,

W = integral (PdV)

It is said that the process above is done at constant volume. Therefore, the value of dV is zero which would result to 

</span>W = integral (PdV) = 0
<span>
(b) the increase in internal energy of the gas
</span> From the first law of thermodynamics,

ΔU = Q + W

where U is the change in internal energy, Q is the heat and W is the work which is zero in this case

ΔU = Q = 209 J<span>

(c) its final temperature
at constant volume,
Q = nCv(T2 - T1)
209 = 1 (3R/2) (T2 - 300)
T = 316.76 K</span>
You might be interested in
In certain cases, using both the momentum principle and energy principle to analyze a system is useful, as they each can reveal
SpyIntel [72]

Answer:

A) F_g = 26284.48 N

B) v = 7404.18 m/s

C) E = 19.19 × 10^(10) J

Explanation:

We are given;

Mass of satellite; m = 3500 kg

Mass of the earth; M = 6 x 10²⁴ Kg

Earth circular orbit radius; R = 7.3 x 10⁶ m

A) Formula for the gravitational force is;

F_g = GmM/r²

Where G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²

Plugging in the relevant values, we have;

F_g = (6.67 × 10^(-11) × 3500 × 6 x 10²⁴)/(7.3 x 10⁶)²

F_g = 26284.48 N

B) From the momentum principle, we have that the gravitational force is equal to the centripetal force.

Thus;

GmM/r² = mv²/r

Making v th subject, we have;

v = √(GM/r)

Plugging in the relevant values;

v = √(6.67 × 10^(-11) × 6 x 10²⁴)/(7.3 x 10⁶))

v = 7404.18 m/s

C) From the energy principle, the minimum amount of work is given by;

E = (GmM/r) - ½mv²

Plugging in the relevant values;

E = [(6.67 × 10^(-11) × 3500 × 6 × 10²⁴)/(7.3 x 10⁶)] - (½ × 3500 × 7404.18)

E = 19.19 × 10^(10) J

5 0
2 years ago
A pendulum is made of a small sphere of mass 0.250 kg attached to a lightweight string 1.20 m in length. As the pendulum swings
forsale [732]

Answer:v=2 m/s

Explanation:

Given

Length of string L=1.2 m

mass of pendulum m=0.25 kg

maximum inclination with vertical \theta =34

vertical Rise of Pendulum from its mean position  is given by

\Delta h=L(1-\cos \theta )

Conserving Energy at top and bottom point

Potential Energy of sphere is converted into kinetic energy of sphere

mgL(1-\cos \theta )=\frac{mv^2}{2}

v=\sqrt{2gL(1-\cos \theta )}

v=\sqrt{2\times 9.8\times 1.2(1-\cos 34)}

v=\sqrt{4.021}

v=2 m/s

5 0
2 years ago
Two circular rods, one steel and the other copper, are joined end to end. Each rod is 0.750 m long and 1.50 cm in diameter. The
Eddi Din [679]

Answer:

(a) Steel rod: 1.1 * 10^{-4}

    Copper rod: 1.88 * 10^{-4}

(b) Steel rod: 8.3 * 10^{-5} m

Copper rod: 1.41 * 10^{-4} m

Explanation:

Length of each rod = 0.75 m

Diameter of each rod = 1.50 cm = 0.015 m

Tensile force exerted = 4000 N

(a) Strain is given as the ratio of change in length to the original length of a body. Mathematically, it is given as

Strain = \frac{1}{Y} * \frac{F}{A}

where Y = Young modulus

F = Fore applied

A = Cross sectional area

For the steel rod:

Y =  200 000 000 000 N/m^{2}

F = 4000N

A = \pi r^{2}      (r = d/2 = 0.015/2 = 0.0075 m)

=> A = \pi * (0.0075)^{2}

=> A = 0.000177 m^{2}

∴ Strain = \frac{4000}{200000000000 * 0.000177} \\\\Strain = \frac{4000}{35400000}\\ \\Strain = 0.000113 = 1.13 * 10^{-4}

For the copper rod:

Y =  120 000 000 000 N/m²

F = 4000N

A = \pi r^{2}      (r = d/2 = 0.015/2 = 0.0075 m)

=> A = \pi * (0.0075)^{2}

=> A = 0.000177 m^{2}

Strain = \frac{4000}{120 000 000 000 * 0.000177} \\\\Strain = \frac{4000}{21240000}\\ \\Strain =  = 1.88 * 10^{-4}

(b) We can find the elongation by multiplying the Strain by the original length of the rods:

Elongation = Strain * Length

For the steel rod:

Elongation = 1.1 * 10^{-4} * 0.75 = 8.3 * 10^{-5} m

For the copper rod:

Elongation = 1.88 * 10^{-4} * 0.75 = 1.41 * 10^{-4} m

6 0
2 years ago
A dog travels north for 18 meters, east for 8 meters, South for 27 meters and then west for 8 meters. What is the distance the d
Afina-wow [57]
I'm really not sure if this is right but I'll try.
The distance that the dog traveled is probably all of the distances added up. I would guess that it's 67 meters in total. 
The displacement is a little more tricky but you pretty much have to put a mental map in your head. Since East and West are both 8 meters, they cancel each other out. He travels more southern and that means the displacement is 9 meters south of his original location
7 0
2 years ago
The speed of an object undergoing constant acceleration increased from 8.0 meters per second to 16.0 meters per second in 10. Se
saw5 [17]

v₀ = initial speed of the object = 8 meter/second

v = final speed of the object = 16 meter/second

t = time taken to increase the speed = 10 seconds

d = distance traveled by the object in the given time duration = ?

using the kinematics equation

d = (v + v₀) t/2

inserting the above values in the above equation

d = (16 + 8) (10)/2

d = 120 meter


6 0
2 years ago
Other questions:
  • The space shuttle releases a satellite into a circular orbit 650 km above the earth. How fast must the shuttle be moving (relati
    15·2 answers
  • At ground level g is 9.8m/s^2. Suppose the earth started to increase its angular velocity. How long would a day be when people o
    11·2 answers
  • An object is 6.0 cm in front of a converging lens with a focal length of 10 cm.Use ray tracing to determine the location of the
    9·1 answer
  • Mari places a marble at the top of a ramp and lets it go. It rolls down. At the bottom of the ramp, the marble bumps into a bloc
    7·2 answers
  • A container of nitrogen (an ideal diatomic gas, molecular weight=28) is at a pressure of 2 atm and has a mass density of 1.6 gra
    13·1 answer
  • A 1000-kg car is driving toward the north along a straight horizontal road at a speed of 20.0 m/s. The driver applies the brakes
    5·1 answer
  • When a vertical beam of light passes through a transparent medium, the rate at which its intensity I decreases is proportional t
    15·1 answer
  • A box of mass M is pushed a distance Δ x across a level floor by a constant applied force F . The coefficient of kinetic frictio
    12·1 answer
  • Isabella deja caer accidentalmente un bolígrafo desde su balcón mientras celebra que resolvió satisfactoriamente un problema de
    12·1 answer
  • The velocity of a car increases from 2.0 m/s to 16.0 m/s in a time period of 3.5 s. What was the average acceleration?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!