The given concentration of boric acid = 0.0500 M
Required volume of the solution = 2 L
Molarity is the moles of solute present per liter solution. So 0.0500 M boric acid has 0.0500 mol boric acid present in 1 L solution.
Calculating the moles of 0.0500 M boric acid present in 2 L solution:

Converting moles of boric acid to mass:

Therefore, 6.183 g boric acid when dissolved and made up to 2 L with distilled water gives 0.0500 M solution.
Answer:
Sr(s) + C(s) + 3/2 O₂(g) → SrCO₃(s)
Explanation:
The standard enthalpy of formation (ΔH°f) is the energy involved in the formation of 1 mole of a substance from its elements in their most stable states. The chemical equation for the formation of SrCO₃(s) is the following.
Sr(s) + C(s) + 3/2 O₂(g) → SrCO₃(s)
Flame colors are produced from the movement of the electrons in the metal ions present in the compounds. When you heat it, the electrons gain energy and can jump into any of the empty orbitals at higher levels Each of these jumps involves a specific amount of energy being released as light energy, and each corresponds to a particular color. As a result of all these jumps, a spectrum of colored lines will be produced. The color you see will be a combination of all these individual colors.
Answer ;
-An element is a substance containing only one type of atom, for example; H2 or 02 (consisting of atoms that all have the same number of protons).
-Microscopic, single atom of that element
-Macroscopic, sample of that element large enough to weigh on a balance
- A substance that cannot be broken down chemically; e.g; sodium metal,
Explanation;
-An element is a substance whose atoms all have the same number of protons: another way of saying this is that all of a particular element's atoms have the same atomic number. Elements are chemically the simplest substances and hence cannot be broken down using chemical reactions.
-An element is uniquely determined by the number of protons in the nuclei of its atoms.