Answer:
C3H6O2
Explanation:
To find the empirical formula of the compound, we divide the amount in moles of each of the elements by the amount in mole of the element with the smallest number of mole. In this question, the element with the smallest number of moles is oxygen with 1.36 mole. Hence, we divide the number of moles of each element by this.
H = 4.10/1.36 = 3
O = 1.36/1.36 = 1
C = 2.05/1.36 = 1.5
We then multiply through by 2 to yield the compound with the empirical formula C3H6O2
Answer:
Al
Explanation:
4 Al + 3 O₂ → 2 Al₂O₃
You need to figure out which one has the smaller mole ratio. Convert both substances from grams to moles.
(10.0 g Al)/(26.98 g/mol) = 0.3706 mol Al
(19.0 g O₂)/(32.00 g/mol) = 0.5938 mol O₂
Now, use the mole ratios of reactant to product to see which substance produces the least amount of product.
(0.3706 mol Al) × (2 mol Al₂O₃/4 mol Al) = 0.1853 mol Al₂O₃
(0.5938 mol O₂) × (2 mol Al₂O₃/3 mol O₂) = 0.3958 mol Al₂O₃
Since aluminum produces the least amount of product, this is the limiting reagent.
<u>Answer:</u> The correct answer is Option A.
<u>Explanation:</u>
Standard enthalpy of formation is the change in enthalpy of one mole of a substance present at the standard state that is 1 atm of pressure and 298 K of temperature. The substance is formed from its pure elements under the same conditions.
We are given a chemical compound having chemical formula 
This compound is formed by the combination of calcium, nitrogen and oxygen elements.
The chemical equation for the formation of
from the components in their standard states follows:

Hence, the correct answer is Option A.
Answer: The actual yield of
is 60.0 g
Explanation:-
The balanced chemical reaction :

Mass of
=

According to stoichiometry:
1 mole of
gives = 1 mole of 
1.51 moles of
gives =
moles of 
Theoretical yield of 
Percent yield of
= 



Thus the actual yield of
is 60.0 g
Answer:
The correct option is: B) H₂0 and OH⁻ as a conjugate pair
Explanation:
According to Brønsted-Lowry theory, the<u> </u><u>acids</u><u> are the chemical substances that form a conjugate base by donating a proton</u> and <u>bases</u><u> are the chemical substances that form conjugate acid by accepting a proton.</u>
In the given chemical reaction: PO₄³⁻(aq) + H₂O(l) ⇄ HPO₄²⁻(aq) + OH⁻(aq)
<u>According to Brønsted-Lowry theory, PO₄³⁻ and OH⁻ are bases. Whereas, H₂O and HPO₄²⁻ are acids.</u>
<u>Also, PO₄³⁻ and HPO₄²⁻ are the conjugate acid-base pair; and H₂O and OH⁻ are the conjugate acid-base pair.</u>