Answer:
Option a) circle 5 meters and 22 meters
Step-by-step explanation:
We are given the following information in the question:
A pair of diameter and the circumference is given. We have to find a correct approximations for the diameter and circumference.
a) circle 5 meters and 22 meters

b) 19 inches and 50 inches

c) 33 centimeters and 80 centimeters

Thus, no pair gives a reasonable approximation. Only the circle with diameter 5 and circumference 22 meters have closest approximation.
Answer:
Range = [- 2.5, 0.5] = [ - 5/2, 1/2]
Step-by-step explanation:
Smallest value of cos α = - 1,
largest value of cos α = 1.
When cos 4x = - 1, y=3/2cos4x-1 = 3/2*(-1) - 1 = - 5/2 = - 2 1/2 = - 2.5
When cos 4x = 1, y=3/2cos4x-1 = 3/2*1 - 1 = 1/2 = 0.5
Range = [- 2.5, 0.5] = [ - 5/2, 1/2]
Answer:
24 terms
Step-by-step explanation:
The sum of an arithmetic sequence is the average of the first and last terms, multiplied by the number of terms. The last term is given by ...
an = a1 + (n-1)d
We have a sequence with first term a1 = 2 and common difference d = 2. So the last term is ...
an = 2+ 2(n -1) = 2n
Then the average of first and last terms times the number of terms is ...
Sn = 600 = n(2 + 2n)/2 = n(n+1) . . . . . . close to n²
We can solve the quadratic in n, or we can estimate the value of n as the integer just below the square root of 600.
√600 ≈ 24.5
so we believe n = 24.
_____
<em>Check</em>
S24 = 24·25 = 600 . . . . . . as required.
The answer should be Two and Three ...
Answer:
< CFE = 40°
Step-by-step explanation:
To better understand the solution, see attachment for the diagram.
Given:
BC parallel to DE
Measure of Arc BD = 58°
Measure of Arc DE = 142°
First step: Draw a diameter that passes through the centre of the circle and name it. In this case, the diameter is line ST.
The line ST divides the arc BD and arc DE into half.
That is:
Arc SC = 1/2(arc BC) =1/2(58)
Arc SC = 29°
Arc TE = 1/2(arc DE) =1/2(142)
Arc TE = 71°
Arc SC + Arc CE + Arc TE = 180° (Sum of angles in a semicircle
29° + Arc CE + 71° = 180°
Arc CE + 100° = 180°
Arc CE = 180-100
Arc CE = 80°
Inscribed angle = 1/2(intercepted angle)
<CFE = 1/2(Arc CE )
<CFE = 1/2(80)
< CFE = 40°