Answer:
The constant of variation is $1.50
Step-by-step explanation:
Given
Point 1 (1,2)
Point 2 (5,8)
Required
Constant of Variation
Though the graph would have assisted in answering the question; its unavailability doesn't mean the question cannot be solved.
Having said that,
the constant variation can be solved by calculating the gradient of the graph;
The gradient is often represented by m and is calculated as thus

Where

By substituting values for x1,x2,y1 and y2; the gradient becomes




Hence, the constant of variation is $1.50
(a) 0.059582148 probability of exactly 3 defective out of 20
(b) 0.98598125 probability that at least 5 need to be tested to find 2 defective.
(a) For exactly 3 defective computers, we need to find the calculate the probability of 3 defective computers with 17 good computers, and then multiply by the number of ways we could arrange those computers. So
0.05^3 * (1 - 0.05)^(20-3) * 20! / (3!(20-3)!)
= 0.05^3 * 0.95^17 * 20! / (3!17!)
= 0.05^3 * 0.95^17 * 20*19*18*17! / (3!17!)
= 0.05^3 * 0.95^17 * 20*19*18 / (1*2*3)
= 0.05^3 * 0.95^17 * 20*19*(2*3*3) / (2*3)
= 0.05^3 * 0.95^17 * 20*19*3
= 0.000125* 0.418120335 * 1140
= 0.059582148
(b) For this problem, let's recast the problem into "What's the probability of having only 0 or 1 defective computers out of 4?" After all, if at most 1 defective computers have been found, then a fifth computer would need to be tested in order to attempt to find another defective computer. So the probability of getting 0 defective computers out of 4 is (1-0.05)^4 = 0.95^4 = 0.81450625.
The probability of getting exactly 1 defective computer out of 4 is 0.05*(1-0.05)^3*4!/(1!(4-1)!)
= 0.05*0.95^3*24/(1!3!)
= 0.05*0.857375*24/6
= 0.171475
So the probability of getting only 0 or 1 defective computers out of the 1st 4 is 0.81450625 + 0.171475 = 0.98598125 which is also the probability that at least 5 computers need to be tested.
uh......huh?? I will look this thingie up for you, I have no clue, but I will. Have a PHENOMANAL night!
The characteristics that are related to Russia at the time of the Crimean War are;
serfs form majority of the population
outdated military
agricultural economy
absolute monarchy
The characteristics that are related to Western European social structure at the time of the Crimean War are;
constitutional monarchy
industrial economy
modern military
no serfs
Answer:
X can be - 2 or 6.
Step-by-step explanation:
d=5
d=sqrt((x2-x1)^2 +(y2-y1)^2)
5=sqrt((x-2)^2 +(5-2)^2)
5^2 =(x-2)^2 +3^2
25=(x-2)^2 +9
(x-2)^2 =25-9
(x-2)^2 =16
x-2=sqrt(16)
x-2=4
x=4+2
x=6;
x-2=-4
x=-4+2
x=-2