Answer:
20.33%
Step-by-step explanation:
We have that the mean (m) is equal to 87.5, the standard deviation (sd) 6.25 and the sample size (n) = 12
They ask us for P (x <86)
For this, the first thing is to calculate z, which is given by the following equation:
z = (x - m) / (sd / (n ^ 1/2))
We have all these values, replacing we have:
z = (86 - 87.5) / (6.25 / (12 ^ 1/2))
z = -0.83
With the normal distribution table (attached), we have that at that value, the probability is:
P (z <-0.83) = 0.2033
The probability is 20.33%
44 x 9 = $396.00
It's really that easy to find the answer. Hope you have a nice day!
Answer:
She should leave a total of $78.
Step-by-step explanation:
To find this, we first need to find the tip amount. We can do this by multiplying the total by the tip percentage.
$65 * 20% = $13
Now that we have that, we need to add it to the cost.
$65 + $13 = $78
<span>1) We are given that PA = PB, so PA ≅ PB by the definition of the radius.
</span>When you draw a perpendicular to a segment AB, you take the compass, point it at A and draw an arc of size AB, then you do the same pointing the compass on B. Point P will be one of the intersections of those two arcs. Therefore PA and PB correspond to the radii of the arcs, which were taken both equal to AB, therefore they are congruent.
2) We know that angles PCA and PCB are right angles by the definition of perpendicular.
Perpendicularity is the relation between two lines that meet at a right angle. Since we know that PC is perpendicular to AB by construction, ∠PCA and ∠PCB are right angles.
3) PC ≅ PC by the reflexive property congruence.
The reflexive property congruence states that any shape is congruent to itself.
4) So, triangle ACP is congruent to triangle BCP by HL, and AC ≅ BC by CPCTC (corresponding parts of congruent triangles are congruent).
CPCTC states that if two triangles are congruent, then all of the corresponding sides and angles are congruent. Since ΔACP ≡ ΔBCP, then the corresponding sides AC and BC are congruent.
5) Since PC is perpendicular to and bisects AB, P is on the perpendicular bisector of AB by the definition of the perpendicular bisector.
<span>The perpendicular bisector of a segment is a line that cuts the segment into two equal parts (bisector) and that forms with the segment a right angle (perpendicular). Any point on the perpendicular bisector has the same distance from the segment's extremities. PC has exactly the characteristics of a perpendicular bisector of AB. </span>
Here, regrouping is basically carrying.
64+43 shown vertically would be:
64
+43
-------
107
4+3 is 7, so seven is in the ones place, but that's not the point.
60+40 is 100, so you regroup by carrying the one to the hundreds place.
Hope I helped!