The outer electron of atom B has moved to a higher energy state.<span>B - 1s2, 2s2, 2p6, 5s1 </span>
Answer:
1.8 × 10⁻¹⁶ mol
Explanation:
(a) Calculate the solubility of the Sr₃(PO₄)₂
Let s = the solubility of Sr₃(PO₄)₂.
The equation for the equilibrium is
Sr₃(PO₄)₂(s) ⇌ 3Sr²⁺(aq) + 2PO₄³⁻(aq); Ksp = 1.0 × 10⁻³¹
1.2 + 3s 2s
![K_{sp} =\text{[Sr$^{2+}$]$^{3}$[PO$_{4}^{3-}$]$^{2}$} = (1.2 + 3s)^{3}\times (2s)^{2} = 1.0 \times 10^{-31}\\\text{Assume } 3s \ll 1.2\\1.2^{3} \times 4s^{2} = 1.0 \times 10^{-31}\\6.91s^{2} = 1.0 \times 10^{-31}\\s^{2} = \dfrac{1.0 \times 10^{-31}}{6.91} = 1.45 \times 10^{-32}\\\\s = \sqrt{ 1.45 \times 10^{-32}} = 1.20 \times 10^{-16} \text{ mol/L}\\](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BSr%24%5E%7B2%2B%7D%24%5D%24%5E%7B3%7D%24%5BPO%24_%7B4%7D%5E%7B3-%7D%24%5D%24%5E%7B2%7D%24%7D%20%3D%20%281.2%20%2B%203s%29%5E%7B3%7D%5Ctimes%20%282s%29%5E%7B2%7D%20%3D%20%201.0%20%5Ctimes%2010%5E%7B-31%7D%5C%5C%5Ctext%7BAssume%20%7D%203s%20%5Cll%201.2%5C%5C1.2%5E%7B3%7D%20%5Ctimes%204s%5E%7B2%7D%20%3D%201.0%20%5Ctimes%2010%5E%7B-31%7D%5C%5C6.91s%5E%7B2%7D%20%3D%201.0%20%5Ctimes%2010%5E%7B-31%7D%5C%5Cs%5E%7B2%7D%20%3D%20%5Cdfrac%7B1.0%20%5Ctimes%2010%5E%7B-31%7D%7D%7B6.91%7D%20%3D%201.45%20%5Ctimes%2010%5E%7B-32%7D%5C%5C%5C%5Cs%20%3D%20%5Csqrt%7B%201.45%20%5Ctimes%2010%5E%7B-32%7D%7D%20%3D%201.20%20%5Ctimes%2010%5E%7B-16%7D%20%5Ctext%7B%20mol%2FL%7D%5C%5C)
(b) Concentration of PO₄³⁻
[PO₄³⁻] = 2s = 2 × 1.20× 10⁻¹⁶ mol·L⁻¹ = 2.41× 10⁻¹⁶ mol·L⁻¹
(c) Moles of PO₄³⁻
Moles = 0.750 L × 2.41 × 10⁻¹⁶ mol·L⁻¹ = 1.8 × 10⁻¹⁶ mol
The answer is (2). The Lithium has 3 protons and 4 neutrons. For every neutral atom, it will have the same number of protons and electrons. Because the proton has one positive charge and electron has one negative charge and neutron does not have charge.
A gaseous compound is 30.4% nitrogen and 69.6% oxygen by mass. A 5.25-g sample of the gas occupies a volume of 1.00 L and exerts a pressure of 1.26 atm at -4.0°C. Which of the following is its molecular formula?
1) NO2
2) N3O6
3) N2O5
4) N2O4
5) NO
gas to liquid
Explanation:
The change of state indicated by this analogy is from gas to liquid.
Cylinder to the left is filled with gases
Cylinder to the right is made up of liquid.
- Gases occupy the volumes of containers they are introduced into.
- They are random and possess a high kinetic energy.
- Liquids have definite volume and flow with one another.
- The gases in A are dispersed and in random motion.
- This phase change is called condensation
learn more:
Phase change brainly.com/question/1875234
#learnwithBrainly