Answer:
A Pipe that is 120 cm long resonates to produce sound of wavelengths 480 cm, 160 cm and 96 cm but does not resonate at any wavelengths longer than these. This pipe is:
A. closed at both ends
B. open at one end and closed at one end
C. open at both ends.
D. we cannot tell because we do not know the frequency of the sound.
The right choice is:
B. open at one end and closed at one end
.
Step-by-step explanation:
Given:
Length of the pipe,
= 120 cm
Its wavelength
= 480 cm
= 160 cm and
= 96 cm
We have to find whether the pipe is open,closed or open-closed or none.
Note:
- The fundamental wavelength of a pipe which is open at both ends is 2L.
- The fundamental wavelength of a pipe which is closed at one end and open at another end is 4L.
So,
The fundamental wavelength:
⇒ 
It seems that the pipe is open at one end and closed at one end.
Now lets check with the subsequent wavelengths.
For one side open and one side closed pipe:
An odd-integer number of quarter wavelength have to fit into the tube of length L.
⇒
⇒ 
⇒
⇒ 
⇒
⇒ 
⇒
⇒
So the pipe is open at one end and closed at one end
.
Answer:
The value that is greater than 45% of the data values is approximately 137.84.
Step-by-step explanation:
The key is transforming values from this distribution to a z-score range and finding the corresponding value using a z-score table.
We are looking for a value x which attains a critical z-score that corresponds to the (100-45)%=55-th percentile:

The critical z value (from z-score table, online) is: -0.12, so:

The value that is greater than 45% of the data values is approximately 137.84.
Answer:
The answer to the question is
The probability that at least one of the next three customers purchases premium gas is the complement of the probability that none of the next three customers purchase premium gas = 1 - (1-P(A))³ = 0.834
Step-by-step explanation:
The probability that a customer would purchase premium grade = 45 %
That is P(A) = 0.45 and
The probability that the customer would purchase another grade = P(B) = 0.55
Therefore the probability of at least one of the next three customers purchase premium gas is
P(k=0) = (1 - P)ⁿ and the probability of at least one customer purchases premium gas is the compliment of the probability that the next three customers purchase another gas brand
that is (1 - P(A))×(1 - P(A))×(1 - P(A)) = P(B)×P(B)×P(B) = 0.55³ and the complement is 1 - 0.55³ = 0.834
Answer:
6 is the correct answer
Step-by-step explanation:
Hope it is helpful...
Answer:
(0,-2)
Step-by-step explanation: