Answer:
Step-by-step explanation:
Given that Bill, George, and Ross, in order, roll a die.
The first one to roll an even number wins and the game is ended.
Since Bill starts the game he can win by throwing even number or lose by throwing odd number
P(win) = 0.5, otherwise, the die will go to George. For Bill to win, both George and Ross should throw an odd number so that Bill again gets the chance with game non ending.
Thus we have Prob of Bill winning =P of Bill winning in I throw +P of Bill winning in his II chance of throw +....infinitely
To get back the dice once he loses probability
= p both throws odd = 
Thus Prob for Bill winning
= 
This is an infinite geometric series with I term 0.5 and common ratio 0.125<1
Sum = 
From 0g to 494.7g are rejected as well as those heavier than 505.3grams.
You calculate this by subtracting and adding 5.3 to 500
Answer:
1) a. False, adding a multiple of one column to another does not change the value of the determinant.
2) d. True, column-equivalent matrices are matrices that can be obtained from each other by performing elementary column operations on the other.
Step-by-step explanation:
1) If the multiple of one column of a matrix A is added to another to form matrix B then we get: |A| = |B|. Here, the value of the determinant does not change. The correct option is A
a. False, adding a multiple of one column to another does not change the value of the determinant.
2) Two matrices can be column-equivalent when one matrix is changed to the other using a sequence of elementary column operations. Correc option is d.
d. True, column-equivalent matrices are matrices that can be obtained from each other by performing elementary column operations on the other.
Y=15x would be the correct graph though if there's more info it might not be