Answer:
0.033 ft
Step-by-step explanation:
Let g = 32.2 ft/s2 and h be the maximum height that water can be filled before the sides shatter.
Pressure is distributed from 0 to maximum at the bottom like the following equation:

So the force generated by water pressure on the side of the tank is

where s = 6ft is the side length of the tank. This force cannot be larger than 200lb



I believe the answer is the ship is traveling at 21.25 MPH, started 10.5 miles from lighthouse and after 11 hours will be 244.25 miles from the lighthouse.
Answer: <u>Last option</u>

Step-by-step explanation:
The z-scores give us information about how many standard deviations from the mean the data are. This difference can be negative, if the data are n deviations to the left of the mean, or it can be positive if the data are n deviations to the right of the mean.
To calculate the Z scores, we calculate the difference between the value of the data and the mean and then divide this difference by the standard deviation.
so
.
Where x is the value of the data, μ is the mean and σ is the standard deviation
In this case
:
μ = 12 $/h
= 2 $/h
We need to calculate the Z-scores for
and 
Then for
:
.
Then for
:
.
Therefore the answer is:

Answer:
Step-by-step explanation:
Hello!
For me, the first step to any statistics exercise is to determine what is the variable of interest and it's distribution.
In this example the variable is:
X: height of a college student. (cm)
There is no information about the variable distribution. To estimate the population mean you need a variable with at least a normal distribution since the mean is a parameter of it.
The option you have is to apply the Central Limit Theorem.
The central limit theorem states that if you have a population with probability function f(X;μ,δ²) from which a random sample of size n is selected. Then the distribution of the sample mean tends to the normal distribution with mean μ and variance δ²/n when the sample size tends to infinity.
As a rule, a sample of size greater than or equal to 30 is considered sufficient to apply the theorem and use the approximation.
The sample size in this exercise is n=50 so we can apply the theorem and approximate the distribution of the sample mean to normal:
X[bar]~~N(μ;σ2/n)
Thanks to this approximation you can use an approximation of the standard normal to calculate the confidence interval:
98% CI
1 - α: 0.98
⇒α: 0.02
α/2: 0.01

X[bar] ± 
174.5 ± 
[172.22; 176.78]
With a confidence level of 98%, you'd expect that the true average height of college students will be contained in the interval [172.22; 176.78].
I hope it helps!