Answer:
The answer is 581 square centimeters
Step-by-step explanation:
To find the time at which both balls are at the same height, set the equations equal to each other then solve for t.
h = -16t^2 + 56t
h = -16t^2 + 156t - 248
-16t^2 + 56t = -16t^2 + 156t - 248
You can cancel out the -16t^2's to get
56t = 156t - 248
=> 0 = 100t - 248
=> 248 = 100t
=> 2.48 = t
Using this time value, plug into either equation to find the height.
h = 16(2.48)^2 + 56(2.48)
Final answer:
h = 40.4736
Hope I helped :)
Answer:
Z = 8 + 2x2 + 2y2
Convert to polar coordinates
Z = 8 + 2r2
Now theta will go from 0 to pi/2 because it's in the first quadrant.
R will go from 0 to the radius of the circle formed at the intersection of the plane and the paraboloid.
14 = 8 + 2r2
r = sqrt(3)
So r goes from 0 to sqrt(3).
You integrate 14-z where 0<r<sqrt(3) and 0<theta<pi/2.
It is 14-z and not z because just z would give the volume under the paraboloid.
Step-by-step explanation: please go answer my recent question
Cylinder
Cone
Sphere
I guess