answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
quester [9]
2 years ago
3

a gas powered model airplane has a mass of 2.50 kilograms. A student exerts a force on a cord to keep the airplane flying around

her at a constant speed of 18.0 meters per seond in a horizontal, circular path with a radius of 25.0 meters. what is the magnitude of the centripetal force exerted on the air plane to keep it moving in this circular path
Physics
1 answer:
Katyanochek1 [597]2 years ago
7 0
The first thing to do in this case is a free-body diagram in the radial direction.From the free body diagram you get that
 Fc = m * ar
 where
 Fc: Centripetal force
 m: mass
 ar: radial acceleration
 By definition
 ar: v ^ 2 / r
 where
 v: speed
 r: radio
 Substituting the values
 Fc = m * (v ^ 2 / r)
 Fc = (2.50 * ((18 ^ 2 / (25)) = 32.4N
 answer
 the magnitude of the centripetal force exerted on the air plane to keep it moving in this circular path is 32.4N
You might be interested in
A 2 000-kg sailboat experiences an eastward force of 3 000 N by the ocean tide and a wind force against its sails with a magnitu
Vesnalui [34]

Answer:

The magnitude of the resultant acceleration is 2.2 m/s^2

Explanation:

Mass (m) of the sailboat =  2000 kg

Force acting on the sailboat due to ocean  tide is F_1 = 3000N

Eastwards means takes place along the positive x direction

ThenF_{1x} = 3000N and F_{1y}= 0

Wind Force acting on the Sailboat isF_2  = 6000N directed towards the northwest that means at an angle  45 degree above the negative x axis

Then  

F_{2x} = -(6000N) cos 45 degree = -4242.6 N

F_{2y}  = (6000N) cos 45 degree = 4242.6 N

Hence  , the net force acting on the sailboat in x direction is  

F_x = F_{1x}+ F_{2x}

=  - 3000 N + 4242.6 N

=  - 3000 N +4242.6 N

= 1242.6N

Net Force acting on the sailboat in y direction is  

F_y = F_{1y}+ F_{2y}

= 0+ 4242.6N

= 4242.6N

The magnitude of the resultant force =

Using pythagorean theorm of 1243 N and 4243 N

\sqrt{(1242.6)^2 + (4242.6)^2

\sqrt{(1544054.76) + (17999654.8)}

\sqrt{(19543709.5)^2}

4420.8 N

F = ma

a = \frac{F}{m}

a =\frac{4420.8}{ 2000}

=2.2 m/s^2

4 0
2 years ago
A ball of mass m and radius R is both sliding and spinning on a horizontal surface so that its rotational kinetic energy equals
spin [16.1K]

Answer:

\frac{v_{cm}}{\omega} = 1.122\cdot R

Explanation:

According to the statement of the problems, the following identity exists:

K_{t} = K_{r}

\frac{1}{2}\cdot m \cdot v_{cm}^{2} = 0.63\cdot m \cdot R^{2} \cdot \omega^{2}

After some algebraic handling, the ratio is obtained:

\frac{v_{cm}^{2}}{\omega^{2}}=1.26\cdot R^{2}

\frac{v_{cm}}{\omega} = 1.122\cdot R

4 0
2 years ago
Ebo throws a ball into the air its velocity at the start is 18m/s at an angle of 37° to the ground. What is the range of the bal
NeTakaya
PLS help ASAP I DONT have time to answer this, it also detects if it’s right or wrong.
6 0
2 years ago
In the figures, the masses are hung from an elevator ceiling. Assume the velocity of the elevator is constant. Find the tensions
Keith_Richards [23]

The elevator may be moving, but if it is moving at a constant velocity, then the observer viewing the mass-rope system is in an inertial reference frame (non-accelerating) and Newton's laws of motion will apply in this reference frame.

A) Choose the point where the ropes intersect (the black dot above m₁) and set up equations of static equilibrium where the forces are acting on that point:

We'll assume that, because rope 3 is oriented vertically, T₃ also acts vertically.

Sum up the vertical components of the forces acting on the point. We will assign upward acting components as positive and downward acting components as negative.

∑Fy = 0

Eq 1: T₁sin(θ₁) + T₂sin(θ₂) - T₃ = 0

Sum up the horizontal components of the forces acting on the point. We will assign rightward acting components as positive and leftward acting components as negative.

∑Fx = 0

Eq 2: T₂cos(θ₂) - T₁cos(θ₁) = 0

T₃ is caused by the force of gravity acting on m₁ which is very easy to calculate:

T₃ = m₁g

m₁ = 3.00kg

g is the acceleration due to earth's gravity, 9.81m/s²

T₃ = 3.00×9.81

T₃ = 29.4N

Plug in known values into Eq. 1 and Eq. 2:

Eq. 1: T₁sin(38.0) + T₂sin(52.0) - 29.4 = 0

Eq. 2: T₂cos(52.0) - T₁cos(38.0) = 0

We can solve for T₁ and T₂ by use of substitution. First let us rearrange and simplify Eq. 2 like so:

T₂cos(52.0) = T₁cos(38.0)

T₂ = T₁cos(38.0)/cos(52.0)

T₂ = 1.28T₁

Now that we have T₂ isolated, we can substitute T₂ in Eq. 1 with 1.28T₁:

T₁sin(38.0) + 1.28T₁sin(52.0) - 29.4 = 0

Rearrange and simplify, and solve for T₁:

T₁(sin(38.0) + 1.28sin(52.0)) = 29.4

1.62T₁ = 29.4

T₁ = 18.1N

Recall from our previous work:

T₂ = 1.28T₁

Plug in T₁ = 18.1N and solve for T₂:

T₂ = 1.28×18.1

T₂ = 23.2N

B) We'll assume that, because rope 2 is horizontally oriented, T₂ also acts horizontally.

Again, choose the point where the ropes intersect and write equations of static equilibrium involving the forces acting at that point:

Sum up the vertical components of the forces

∑Fy = 0

Eq. 3: T₁sin(θ₃) - T₃ = 0

Sum up the horizontal components of the forces

∑Fx = 0

Eq. 4: T₂ - T₁cos(θ₃) = 0

Right away we can solve for T₃, which is the force of gravity acting on m₂:

T₃ = m₂g, m₂ = 6.00kg, g = 9.81m/s²

T₃ = 6.00×9.81

T₃ = 58.9N

Plug in known values into Eq. 3:

T₁sin(61.0) - 58.9 = 0

We can solve for T₁ now that is is the only unknown value in this equation

0.875T₁ = 58.9

T₁ = 67.3N

Plug in known values into Eq. 4:

T₂ - 67.3cos(61.0) = 0

We can solve for T₂ now that it is the only unknown value in this equation

T₂ = 67.3cos(61.0)

T₂ = 32.6N

6 0
2 years ago
A 45-mH inductor is connected to an ac source of emf with a frequency of 250 Hz and a maximum emf of 20 V. If the voltage across
ruslelena [56]

Answer:

-20v

Explanation:

Data provided in the question as per the given situation

L = 45 mH

f = 250 Hz

V_o = 20V

Based on the above information, let us assume voltage across inductor be V at t

So,

V = 20 sin (2 \pi \times 250\times t + \frac{\pi}{2})

t = 2 ms

Now

The voltage at time t = 2.0 ms is

V_1 = 20 sin (500\times 2\times 10^{-1} \times \pi + \frac{\pi}{2})

= 20 sin(\pi + \frac{\pi}{2} )

= -20 volt

= -20v

We simply solved the above equation so that the correct voltage could come

5 0
2 years ago
Other questions:
  • The chemical formula for glucose is C6H12O6. Therefore, four molecules of glucose will have carbon atoms, hydrogen atoms, and ox
    15·2 answers
  • Find an expression for the acceleration a of the red block after it is released. use mr for the mass of the red block, mg for th
    6·2 answers
  • A cubical box, 5.00 cm on each side, is immersed in a fluid. The gauge pressure at the top surface of the box is 594 Pa and the
    13·1 answer
  • The CBR method of flexible pavement design gives an idea about the:
    10·1 answer
  • A sample of a gas occupies a volume of 90 mL at 298 K and a pressure of 702 mm Hg. What is the correct expression for calculatin
    9·1 answer
  • Two charges, qA and qB, are separated by a distance, d, and exert a force, F, on each other. Analyze Coulomb's law and answer th
    9·1 answer
  • An object on a number line moved from x = 15 cm to x = 165 cm and then
    6·2 answers
  • Select all the correct answers.
    10·1 answer
  • A solar-powered car has a kinetic energy of 110250 J. Its mass is 180 kg. Work out how fast the car is travelling.
    9·2 answers
  • A particle at 9 AM is moving towards the east at 4 ms At 12 noon, it changes its velocity and starts moving towards the north un
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!