Given :
Initial velocity, u = -6 m/s.
Time taken, t = 4 seconds.
Acceleration due to gravity,
.( Here negative sign means downward direction )
To Find :
Velocity after 4 seconds.
Solution :
By equation of motion.
v = u + at
Here , a = g.
v = u + gt
v = -6 + (-9.8)×4
v = -6 + (-39.2)
v = -45.2 m/s
Therefore, velocity after 4 seconds is -45.2 m/s.
Hence, this is the required solution.
The speed of light is constant in ALL frames of reference. That is 2.9 x10^8 m/s (290,000,000 m/s). It is independent of the motion of the light source.
Answer:
407 steps
Explanation:
From the question,
P = mgh/t........... Equation 1
Where P = power, m = mass, g = acceleration due to gravity, h = height, t = time.
Make h the subject of the equation
h = Pt/mg............. Equation 2
Given: P = 746 W, t = 1 minute = 60 seconds, m = 70 kg.
Constant: g = 9.8 m/s²
Substitute into equation 2
h = 746(60)/(70×9.8)
h = 44760/686
h = 65.25 m
h = 6525 cm
number of steps = 6525/16
number of steps = 407 steps
Radio wave is about 3.10^8m/s divided by 10^8 hz is 3 nesters sound wave is 343m/s so thus Equal to approximately 0.78
For nuclear reactions, we determine the energy dissipated from the process from the Theory of relativity wherein energy is equal to the mass defect times the speed of light. We calculate as follows:
E = mc^2 = 0.187456 (3x10^8)^2 = 1.687x10^16 J
Hope this answers the question.