Answer:
Explanation:
The acceleration of an object down a slope (neglecting friction, µ = 0) is:
a = g × sin θ
Where,
g is the acceleration due to gravity and θ is the angle of the slope.
a = (9.8 × sin (21.5º)
= 3.592 m/s²
Using equations of motion,
S = ut + 1/2at²
Since, u = 0,
S = 1/2at²
347 = 1/2 × (3.592)t²
t² = 193.21
= sqrt(193.21)
= 13.9 s.
Answer:
D) -Q
Explanation:
The charge inserted will induce -Q charge on the inner surface and + Q on the outer surface of the shell . This charge is called bound charge because it remained attached with opposite charge inserted inside.
Answer
given,
height of the dam = 15 m
effective area of water = 2.3 x 10⁻³ m²
Using energy conservation


v = 17.15 m/s
discharge of water
Q = A V
Q = 2.3 x 10⁻³ x 17.15
Q = 0.039 m³/s
In quantum mechanics, particularly the wave-particle theory, it states that light behaves like a wave or a particle. For the wave behavior, its movement is measured in wavelengths while the time for each wavelength is the frequency. For the particle behavior, according to Planck, the energy of the photon (light particle) is determined as
E = hc/wavelength, where h is the Planck's constant (<span>6.626 x 10-34 J-s per particle) and c is the speed of light ( 3 x 10^8m/s)
As you can see, the energy of the photon is INVERSELY PROPORTIONAL to the wavelength with the Planck's constant as the constant of proportionality.</span>
Answer:

Explanation:
<u>Free Fall Motion</u>
A free-falling object refers to an object that is falling under the sole influence of gravity. If the object is dropped from a certain height h, it moves downwards until it reaches ground level.
The speed vf of the object when a time t has passed is given by:

Where 
Similarly, the distance y the object has traveled is calculated as follows:

If we know the height h from which the object was dropped, we can solve the above equation for t:

The stadium is h=32 m high. A pair of glasses is dropped from the top and reaches the ground at a time:

The pen is dropped 2 seconds after the glasses. When the glasses hit the ground, the pen has been falling for:

Therefore, it has traveled down a distance:

Thus, the height of the pen is:
