Answer:
Friction acts in the opposite direction to the motion of the truck and box.
Explanation:
Let's first review the problem.
A moving truck applies the brakes, and a box on it does not slip.
Now when the truck is applying brakes, only it itself is being slowed down. Since the box is slowing down with the truck, we can conclude that it is friction that slows it down.
The box in the question tries to maintains its velocity forward when the brakes are applied. We can think of this as the box exerting a positive force relative to the truck when the brakes are applied. When we imagine this, we can also figure out where the static friction will act to stop this positive force. Friction will act in the negative direction. Or in other words, friction will act in the opposite direction to the motion of the truck and box. This explains why the box slows down with the truck, as friction acts to stop its motion.
Answer:
88.3
Explanation:
Emf in a rotating coil is given by rate of change of flux:
E= dФ/dt=(NABcos∅)/ dt
N: number of turns in the coil= 80
A: area of the coil= 0.25×0.40= 0.1
B: magnetic field strength= 1.1
Ф: angle of rotation= 90- 37= 53
dt= 0.06s
E= (80 × 0.4× 0.25×1.10 × cos53)/0.06= 88.3V
This question deals with the law of conservation of momentum, which basically says that the total momentum in a system must stay the same, provided there are no outside forces. Since you were given the mass and velocity of the two objects you can find the momentum (p=mv) of each and then add them together to find the total momentum of the system before they collide. This total momentum must be the same after they collide. Since you have the mass and velocity of one of the objects after the collision you can find the its momentum after. Subtract this from the the system total and you will have the momentum of the other object after the collision. Now that you know the momentum of the other object you can find its velocity using p=mv and its mass from before.
Be careful with the velocities. They are vectors, so direction matters. Typically moving to the right is positive (+) and moving to the left is negative (-). It is not clear from your question which direction the objects are moving before and after the collision.
Based on the given details with this question, I can say that the direction of motion is not conserved. This is because the boat is subjected to an external force because of water resistance. So, the answer for this question would be NO.
Answer:

Since we have identical diodes we can use the equation:

And replacing we have:
Since we know that 1 mA is drawn away from the output then the real value for I would be

And for this case the value for
would be:

And the output votage on this case would be:

And the net change in the output voltage would be:

Explanation:
For this case we have the figure attached illustrating the problem
We know that the equation for the current in a diode id given by:
![I_D = I_s [e^{\frac{V_D}{V_T}} -1] \approx I_S e^{\frac{V_D}{V_T}}](https://tex.z-dn.net/?f=%20I_D%20%3D%20I_s%20%5Be%5E%7B%5Cfrac%7BV_D%7D%7BV_T%7D%7D%20-1%5D%20%5Capprox%20I_S%20e%5E%7B%5Cfrac%7BV_D%7D%7BV_T%7D%7D)
For this case the voltage across the 3 diode in series needs to be 2 V, and we can find the voltage on each diode
and each voltage is the same v for each diode, so then:

Since we have identical diodes we can use the equation:

And replacing we have:

Since we know that 1 mA is drawn away from the output then the real value for I would be

And for this case the value for
would be:

And the output votage on this case would be:

And the net change in the output voltage would be:
