Answer:
The terminal speed of this object is 12.6 m/s
Explanation:
It is given that,
Mass of the object, m = 80 kg
The magnitude of drag force is,

The terminal speed of an object is attained when the gravitational force is balanced by the gravitational force.



On solving the above quadratic equation, we get two values of v as :
v = 12.58 m/s
v = -15.58 m/s (not possible)
So, the terminal speed of this object is 12.6 m/s. Hence, this is the required solution.
Answer:
2 x 10⁻³ volts
Explanation:
B = magnetic of magnetic field parallel to the axis of loop = 1 T
= rate of change of area of the loop = 20 cm²/s = 20 x 10⁻⁴ m²
θ = Angle of the magnetic field with the area vector = 0
E = emf induced in the loop
Induced emf is given as
E = B
E = (1) (20 x 10⁻⁴ )
E = 2 x 10⁻³ volts
E = 2 mV
Answer:
The answer is 3.
Explanation:
The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.
So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.
I hope this answer helps.
In this case, the two vectors are in the same direction, so they simply add:
<span>
total motion = 18m/s + 2.5m/s = 20.5m/s to the west </span>
We can solve this problem using the force equation.
Force = Mass * Acceleration
2kg * 4m/s = 8 N
The net force required to keep the object moving at this speed and in this direction is 8 N.