From the given function modeling the height of the ball:
f(x)=-0.2x^2+1.4x+7
A] The maximum height of the ball will be given by:
At max height f'(x)=0
from f(x),
f'(x)=-0.4x+1.4
solving for x we get:
-0.4x=-1.4
x=3.5ft
thus the maximum height would be:
f(3.5)=-0.2(3.5)^2+1.4(3.5)+7
f(3.5)=9.45 ft
b]
How far from where the ball was thrown did this occur:
from (a), we see that at maximum height f'(x)=0
f'(x)=-0.4x+1.4
solving for x we get:
-0.4x=-1.4
x=3.5ft
This implies that it occurred 3.5 ft from where the ball was thrown.
c] How far does the ball travel horizontally?
f(x)=-0.2x^2+1.4x+7
evaluationg the expression when f(x)=0 we get:
0=-0.2x^2+1.4x+7
Using quadratic equation formula:
x=-3.37386 or x=10.3739
We leave out the negative and take the positive answer. Hence the answer 10.3739 ft horizontally.
Let
L---------> the length side of the box
W--------> the width side of the box
H-------> the height of the box
we know that

the surface area of the box is equal to

<u>Find the area of the base</u>

<u>Find the perimeter of the base</u>

<u>Find the surface area</u>


therefore
<u>the answer is</u>
the total area of the box that will be covered in gift wrap is 
Answer:

Step-by-step explanation:
we know that
<u><em>Combinations</em></u> are a way to calculate the total outcomes of an event where order of the outcomes does not matter.
To calculate combinations, we will use the formula

where
n represents the total number of items
r represents the number of items being chosen at a time.
In this problem

substitute

simplify



Answer:
y = -2
Step-by-step explanation:
Any asymptotes of a rational function will be described by the quotient of the numerator and denominator (excluding any remainder).

The horizontal asymptote is ...
y = -2