Answer:
168 adult tickets
Step-by-step explanation:
3.75(82) (82 students)
307.5
2071.5 - 307.5 ( you subtract since you only need to know the number of adults)
1764
1764/10.5 (you divide since each adult is 10.5$)
168
Answer:
As a square and four semi circles
Step-by-step explanation:
Answer: The answer is (D) Reflection across the line y = -x.
Step-by-step explanation: In figure given in the question, we can see two triangles, ΔABC and ΔA'B'C' where the second triangle is the result of transformation from the first one.
(A) If we rotate ΔABC 180° counterclockwise about the origin, then the image will coincide with ΔA'B'C'. So, this transformation can take place here.
(B) If we reflect ΔABC across the origin, then also the image will coincide with ΔA'B'C' and so this transformation can also take place.
(C) If we rotate ΔABC through 180° clockwise about the origin, the we will see the image will be same as ΔA'B'C'. Hence, this transformation can also take place.
(D) Finally, if we reflect ΔABC across the line y = -x, the the image formed will be different from ΔA'B'C', in fact, it is ΔA'D'E', as shown in the attached figure. So, this transformation can not take place here.
Thus, the correct option is (D).
Answer:
84? Not sure but pretty sure
Step-by-step explanation:
In a straight line, the word can only be spelled on the diagonals, and there are only two diagonals in each direction that have 2 O's.
If 90° and reflex turns are allowed, then the number substantially increases.
Corner R: can only go to the adjacent diagonal O, and from there to one other O, then to any of the 3 M's, for a total of 3 paths.
2nd R from the left: can go to either of two O's, one of which is the same corner O as above. So it has the same 3 paths. The center O can go to any of 4 Os that are adjacent to an M, for a total of 10 more paths. That's 13 paths from the 2nd R.
Middle R can go the three O's on the adjacent row, so can access the three paths available from each corner O along with the 10 paths available from the center O, for a total of 16 paths.
Then paths accessible from the top row of R's are 3 +10 +16 +10 +3 = 42 paths. There are two such rows of R's so a total of 84 paths.